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NASA-UVA LIGHT AEROSPACEALLOY AND
STRUCTURESTECHNOLOGY PROGRAM

SUMMARY

The NA_A-UVa Light Aerospace Alloy and Structures Technology

Program (LA_ST) has been founded by substantially broadening the

scope of a predecessor NASA-Langley Grant. Here, we report on

progress achieved between January 1 and June 31, 1989.

The objective of the LA2ST Program is to conduct interdisci-

plinary graduate student research on the performance of next

generation, light weight aerospace alloys and associated thermal

gradient structures in close collaboration with Langley research-

ers. Individual technical objectives are established for each

research project. Our efforts will produce basic understanding

of material behavior, new monolithic and composite alloys, proc-

essing methods, solid and fluid mechanics analyses, measurement

advances and a pool of educated graduate students.

The accomplishments presented in this report are highlighted

as follows:

DQ 6 PhD and 3 MS graduate students, and 7 faculty members from

three Departments at UVa and VPI are participating in 9

research projects, each in conjunction with a Branch at

LaRC.

DQ 5 new projects, each with a graduate student, and 3 addi-

tional faculty advisors will begin within the next two
months. 2 students were recruited for this work.

ee 6 publications and 6 presentations at technical meetings

were recorded during this reporting period.

00 Research on corrosion fatigue of AI-Li-Cu alloy 2090 broadly

characterized fracture mechanics and fractographic behavior,

and established the central role of hydrogen embrittlement

to guide alloy development and life prediction.

00 Research on Ai-Li-Cu alloys reproduced the beneficial

strengthening effect of small In additions for large heats,

and demonstrated a complex notch fracture toughness behavior

which is degraded by overaging, low test temperature and

perhaps indium.

00 Research on localized corrosion of AI-Li alloys has shown

that T 1 phase is active and does not passivate for a broad

pH range, while iron-bearing constituent particles are

aggressively cathodic compared to AI. Resulting sub-

boundary attack and near particle ditching are significant

in pitting and stress corrosion crack initiation.
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00 Research on SCC of AI-Li-Cu alloys demonstrated the dramatic
effects of certain electrolytes, particularly lithium car-
bonate, which decrease time-to-failure for slow strain rate
and "Breaking Load" type experiments.

00 Research on fiber-matrix reaction studies (Ti-ll00 and
Ti-15-3 matrices containing SCS-6, SCS-9 and SCS-10 fibers)
has been initiated. The kinetic parameters, reaction zone
thickness versus time, reaction constants and activation
energies have been determined and compared with other sys-
tems.

oQ Research on methods for quantifying non-random particle
distributions in materials has led to generation of a set of
computer programs that can detect and characterize clusters
of particles.

This work was largely supported by the previous grant to the
Materials Science Department; new funding was received in June of
this year and work in solid mechanics is now commencing in con-
junction with the projects described in this report.
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INTRODUCTION

Background

For the past three years, the NASA-Langley Research Center

has sponsored graduate student research at the University of

Virginia and at Virginia Polytechnic Institute and State Univer-

sity on the performance of light aerospace alloys in aggressive

environments [I]. Results are documented in a series of progress

reports [2-4]; a grant review meeting was held in July of 1988 at
NASA-LaRC. In the Fall of 1988 this program was increased to

incorporate research at UVa on the processing of advanced aero-

space materials [5], and in early 1989 the program was further

increased in scope to include broadly interdisciplinary work on

solid mechanics and thermal structures [6]. The NASA-UVA LIGHT

AEROSPACE ALLOY AND STRUCTURES TECHNOLOGY PROGRAM (LA2ST) was

thusly founded. This progress report summarizes the results

obtained under this interdisciplinary program and for the period

from January i, 1989 to June 30, 1989.

Problem and Needs

Future aerospace missions require advanced light alloys and

composites with associated processing and fabrication methods;

new structural design methods and concepts with experimental

evaluations; component reliability/durability/damage tolerance

prediction procedures; and a pool of doctoral level engineers and
scientists. Work on advanced materials and structures must be

fully integrated. The NASA-UVa Technology Program addresses

these needs.

LA2ST Program

As detailed in the original proposal [6], faculty from the

Departments of Materials Science, Mechanical and Aerospace Engi-

neering and civil Engineering at UVa are participating in the
LA_ST research and education program centered on high perform-

ance, light weight, aerospace alloys and structures. The objec-
tive of this effort is to develop long term and interdisciplinary

collaborations between graduate students, UVa faculty, and NASA-

Langley researchers. Our efforts will produce basic understand-

ing of materials behavior, new monolithic and composite alloys,

processing methods, solid and fluid mechanics analyses, and

measurement advances. A major product of the program is graduate

students with education and research experience in materials

science, mechanics and mathematics.

The scope of the LA2ST Program is broad. Four research

project areas are being investigated, including: (i) ENVIRONMENT
ASSISTED DEGRADATION MECHANISMS IN ADVANCED LIGHT METALS, (2)

AEROSPACE MATERIALS SCIENCE, (3) MECHANICS OF MATERIALS FOR

AEROSPACE STRUCTURES, and (4) THERMAL GRADIENT STRUCTURES.

Fourteen specific research projects are ongoing within these

areas. These projects, which form the basis for the dissertation
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requirement of graduate studies, involve nine faculty and four-
teen graduate students. The majority of the graduate students
are doctoral level and citizens of the United States. Research is
conducted at either UVa or LaRC, and under the guidance of UVa
faculty and NASA professionals• Each project is developed in
conjunction with a specific LaRC researcher. Participating
students and faculty are closely identified with a NASA-LaRC
sponsored program•

A primary goal of the LA2ST Program is to foster interdisci-
plinary research• To this end, many of the research projects
share a common focus on light and reusable space structures which
will be subjected to aggressive terrestrial and space environ-
ments; with emphasis on both cryogenic and elevated temperature
conditions with severe thermal gradients typical of tankage
structures•

Organization of Progress Report

This progress report provides organizational and administra-

tive information (viz. statistics on the productivity of faculty

and student participants, a history of current and graduated

students, and ongoing projects with NASA and UVa advisors)• The

next sections provide summaries of technical accomplishments and

problems for each research project and over the period from

January to June of 1989. Appendices document conference partici-

pation and provide reprints of technical papers which were de-

veloped under Grant sponsorship•

References

• R.P. Gangloff, G.E. Stoner and M.R. Louthan, Jr., "Environ-

ment Assisted Degradation Mechanisms in AI-Li Alloys",

University of Virginia, Proposal No. MS-NASA/LaRC-3545-87,

October, 1986.

• R.P. Gangloff, G.E. Stoner and R.E. Swanson, "Environment

Assisted Degradation Mechanisms in AI-Li Alloys", University

of Virginia, Report No. UVA/528266/MS88/101, January, 1988.

• R.P. Gangloff, G.E. Stoner and R.E. Swanson, "Environment

Assisted Degradation Mechanisms in Advanced Light Metals",

University of Virginia, Report No. UVA/528266/MS88/I02,
June, 1988.

• R.P. Gangloff, G.E. Stoner and R.E. Swanson, "Environment

Assisted Degradation Mechanisms in Advanced Light Metals",

University of Virginia, Report No. UVA/528266/MS89/I03,

January, 1989.

• T.H. Courtney, R.P. Gangloff, G.E. Stoner and H.G.F. Wils-

dorf, "The NASA-UVA Light Alloy Technology Program", Univer-

sity of Virginia, Proposal No. MS NASA/LaRC-3937-88, March,
1988.



o R.P. Gangloff, "NASA-UVa Light Aerospace Alloys and Struc-

tures Technology Program", University of Virginia, Proposal

No. MS NASA/LaRC-4278-89, January, 1989.



SUMMARy STATISTICS

The following table documents numbers of students and facul-

ty who have or are participating in the LA2ST Program. Education

and research accomplishments are indicated by the numbers of

degrees awarded, and by publications and presentations, respec-

tively. The youth of the program explains the lack of degrees

granted to date; the first two PhD students should graduate in

1989. The senior PhD student on the program, Mr. Robert Piascik,

should graduate in September and has accepted a position with the

Fatigue and Fracture Branch at the Langley Research Center. Mr.

James Moran plans to graduate in late 1989, and has accepted a

National Research Council Postdoctoral Fellowship at the Naval

Research Laboratories in Washington, D.C. The aggressive charac-

ter and quality of the ongoing research projects are indicated by

the publication and presentation activity. As an example, Grant

research was well represented at the recent International Confer-

ence on Aluminum-Lithium alloys.

I/I to 6/30/89 1986 TO 1/89

PhD Students: UVa

: NASA-LaRC

MS Students: UVa

: NASA-LaRC

: VPI

UVa

VPI

Faculty:

Research Associates:

PhD Awarded:

MS Awarded:

Employers: NASA

: Other

Publications:

Presentations:

Dissertations/Theses:

NASA Reports:

UVa

5 3

1 1

2 0

0 0

1 1

6 2

1 1

1 0

0 0

0 0

0 0

0 0

6 3

6 7

0 0

1 4
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Post-Doctoral Research Associate Participation

in NASA-UVa LA2ST Program

Pos Res. Assoc.

Employer

Yang Leng

Tenure

3/88 to 3/90

Research Supervisor

Eleveated Temp- R. P. Gangloff
ature Fracture

of PM A1 Alloys.

Fatigue of

Composites
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CURRENT PROJECTS

ENVIRONMENT ASSISTED DEGRADATION MECHANISMS

IN ADVANCED LIGHT METALS

lo

•

•

.

•

DAMAGE LOCALIZATION MECHANISMS IN CORROSION FATIGUE OF

ALUMINUM-LITHIUMALLOYS

Faculty Investigator: R.P. Gangloff

Graduate Student: Robert S. Piascik; PhD candidate

UVa Department: Materials Science

NASA-LaRC Contact: D. L. Dicus (Metallic Materials)

Start Date: June, 1986

Anticipated Completion Date: August, 1989

ELEVATED TEMPERATURE CRACK GROWTH IN ADVANCED RAPIDLY SOLID-

IFIED POWDER METALLURGY ALUMINUM ALLOYS

Faculty Investigator: R.P. Gangloff

Graduate Student: William C. Porr, Jr.; PhD candidate

UVa Department: Materials Science

NASA-LaRC Contact: C.E. Harris (Fatigue and Fracture)

Start Date: January, 1988

Anticipated Completion Date: June, 1991

DEFORMATION AND FRACTURE OF THIN SHEET ALUMINUM-LITHIUM AL-

LOYS: THE EFFECT OF CRYOGENIC TEMPERATURES

Faculty Investigator: R.P. Gangloff

Graduate Student: John A. Wagner; PhD candidate

UVa Department: Materials Science

NASA-LaRC Contacts: W.B. Lisagor (Metallic Materials) and

J.C. Newman (Fatigue and Fracture)

Start Date: June, 1987

Anticipated Completion Date: June, 1991

NEAR THRESHOLD CORROSION FATIGUE OF ADVANCED ALUMINUM ALLOYS

AND COMPOSITES

Faculty Investigator: R.P. Gangloff

Graduate Student: Donald Slavik; PhD Candidate

UVa Department: Materials Science

NASA-LaRC Contact: D.L. Dicus (Metallic Materials)

Start Date: September, 1989

Anticipated Completion Date: June, 1992

MEASUREMENTS AND MECHANISMS OF LOCALIZED AQUEOUS CORROSION

IN ALUMINUM-LITHIUM ALLOYS

Faculty Investigator: Glenn E. Stoner

Graduate Student: Rudolph G. Buchheit, Jr.; PhD candidate

UVa Department: Materials Science

NASA-LaRC Contact: D. L. Dicus (Metallic Materials)

Start Date: June, 1987

Anticipated Completion Date: January, 1991
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•
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•

AN INVESTIGATION OF THE LOCALIZED CORROSION AND STRESS

CORROSION CRACKING BEHAVIOR OF ALLOY 2090 (AI-Li-CU)

Faculty Investigator: Glenn E. Stoner

Graduate Student: James P. Moran; PhD candidate

UVa Department: Materials Science

NASA-LaRC Contact: W.B. Lisagor (Metallic Materials)

Start Date: September, 1988

Anticipated Completion Date: December, 1989

THE EFFECTS OF ZINC ADDITION ON THE ENVIRONMENTAL STABILITY

OF ALUMINUM-LITHIUM ALLOY

Faculty Investigator: Glenn E. Stoner
Graduate Student: MS or PhD candidate to be recruited

Department: Materials Science

NASA-LaRC Contact: W.B. Lisagor (Metallic Materials)

Start Date:

Anticipated Completion Date:

DEFORMATION AND FRACTURE OF ALUMINUM-LITHIUM ALLOYS:

EFFECT OF DISSOLVED HYDROGEN

Faculty Investigator: R.E. Swanson (VPI)
Graduate Student: Frederick C. Rivet; MS candidate

VPI Department: Materials Engineering at VPI

NASA-LaRC Contact: D.L. Dicus (Metallic Materials)

Start Date: September, 1988

Anticipated Completion Date: March, 1990

THE

AEROSPACE MATERIALS SCIENCE

•

B

INVESTIGATION OF THE REACTION KINETICS BETWEEN SIC FIBERS

AND SELECTIVELY ALLOYED TITANIUM MATRIX COMPOSITES AND

DETERMINATION OF THEIR MECHANICAL PROPERTIES

Faculty Investigator: F.E. Wawner

Graduate Student: D. Gundel; MS candidate

UVa Department: Materials Science

NASA-LaRC Contact: William Brewer (Metallic Materials)

Start Date: September, 1988

Anticipated Completion Date: May, 1990

THE EFFECT OF NON-RANDOM PARTICLE DISTRIBUTION ON THE ME-

CHANICAL BEHAVIOR OF STRUCTURAL MATERIALS

Faculty Investigator: John A. Wert

Graduate Student: Joseph Parse; PhD candidate

UVa Department: Materials Science

NASA-LaRC Contact: D.R. Tenney (Materials Division)

Start Date: September, 1988

Anticipated Completion Date: May, 1991

14



MECHANICS OF MATERIALS FOR AEROSPACE STRUCTURES

lo INELASTIC RESPONSE OF METAL MATRIX COMPOSITES UNDER BIAXIAL

LOADING

Faculty Investigators: Carl T. Herakovich and Marek-Jerzy
Pindera

Graduate Student: To be recruited

UVa Department: Civil Engineering

NASA-LaRC Contact: Charles Harris (Fatigue and Fracture)

Start Date: April, 1989

Anticipated Completion Date: January, 1991

THERMAL GRADIENT STRUCTURES

lo

•

•

DESIGN OF CRYOGENIC TANKS FOR LAUNCH VEHICLES

Faculty Investigators: W. D. Pilkey and J. K. Haviland

Graduate Student: Charles Copper

UVa Department: Mechanical and Aerospace Engineering

NASA-LaRC Contact: Donald Rummler (Thermal Structures)

Start Date: April, 1989

Anticipated Completion Date: January, 1991

FINITE ELEMENT THERMAL-STRUCTURAL ANALYSIS OF HIGH TEMPERA-

TURE VISCOPLASTIC STRUCTURES

Faculty Investigator: Earl A. Thornton
Graduate Student: To be recruited

UVa Department: Mechanical and Aerospace Engineering

NASA-LaRC Contact: Donald Rummler (Thermal Structures)

Start Date: August, 1989

Anticipated Completion Date: To be determined

EXPERIMENTAL STUDY OF THE VISCOPLASTIC RESPONSE OF HIGH TEM-

PERATURE STRUCTURES

Faculty Investigators: Earl A. Thornton and Richard P.

Gangloff

Graduate Student: To be recruited

UVa Department: Mechanical and Aerospace Engineering

NASA-LaRC Contact: Donald Rummler (Thermal Structures)

Start Date: August, 1989

Anticipated Completion Date: To be determined
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ADMINISTRATIVE PROGRESS AND PLANS

Student Recruitment

Several new students have been recruited into the LA2ST

Program, including:

Mr. Donald Slavik; PhD candidate from General Electric

Aircraft Engine Group; working with Prof. Gangloff in Mate-

rials Science, beginning in August of 1989.

Mr. Charles Copper; MS candidate from Washington and Lee

University; working with Profs. Haviland and Pilkey in

Mechanical and Aerospace Engineering, beginning in May of

1989.

Ms. Cynthia Lach; MS candidate currently employed by NASA-

LaRC; working with Prof. Gangloff in Materials Science,

beginning in January of 1990.

Brochure

A brochure will be developed during the second half of 1989.

The purpose of this will be to facilitate graduate student re-

cruitment by describing the educational and technical opportuni-

ties provided by the LA2ST Program. A secondary objective will

be to advertise our research programs to the technical community
worldwide.

Yearly Meeting

Because of the delayed startup of several of the research

projects, we plan to postpone the proposed annual NASA-UVa tech-

nical meeting until the Spring of 1990. During the next quarter,

the Technical Program Director and the NASA Grant Monitor will

decide upon the format and scheduling of this technical session.

The objective here is to provide graduate students and other

participants with a presentation opportunity, to review and

improve research directions, to promote interdisciplinary re-

search and to spawn new technical ideas.

16



RESEARCH PROGRESS AND PLANS (January i, 1989 to June 30, 1989)

Research progress recorded during the period of this report

and future plans are described here for individual projects•

Since the funding for the 1989 Technology Program did not arrive

at UVa until June 1989, only those projects which were ongoing

under the predecessor grant are described• All individual

projects will be initiated by the end of August, 1989, and will

be discussed in the next progress report.

Proqram 1 DAMAGE LOCALIZATION MECHANISMS IN CORROSION

FATIGUE OF ALUMINUM-LITHIUM ALLOYS

Robert S. Piascik and Richard P.Gangloff

This research project is essentially completed• Mr. Piascik

is in the final stages of writing his PhD dissertation and plans

to defend this work near the end of August• Three papers have

been published and two additional papers are planned.

The essence of our results on environmental fatigue crack

propagation in Aluminum-Lithium alloys is given by the following

conclusions which were taken from each chapter of the disserta-

tion.

A• DEVELOPMENT OF ELECTRICAL POTENTIAL MEASUREMENTS OF CRACK

GROWTH FOR GASEOUS AND AQUEOUS ENVIRONMENTS

Conclusions

le The direct current electrical potential method accurately

and reproducibly monitors fatigue crack propagation in

aluminum alloys exposed to a variety of benign and corrosive

gaseous and aqueous environments•

• Experimental results for steels compare with literature data

demonstrating that experimental equipment and methods can be

applied to the study of environmental effects on intrinsic

fatigue crack propagation in aluminum alloys•

• Aqueous corrosion fatigue crack growth rates in aluminum are

not altered by an applied electrical current•

• Corrosion fatigue crack propagation in alloy 2090 is not

influenced by the EDM micronotch; neither contaminants nor a
remelt zone were introduced.

B. INTRINSIC FATIGUE CRACK GROWTH

Conclusions

• Using high resolution potential difference monitoring, a

short crack geometry and the current constant AK/Kmax step

17
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I•

•

•

changed R test scheme, an excellent method has been de-

veloped for the continuous insitu monitoring of intrinsic

fatigue crack growth in aluminum alloys•

The intrinsic fatigue crack growth characteristics for alloy

2090 in moist air exhibit an intermediate stress intensity

range "plateau" behavior, suggest ing a

microstructural/environmental change in fracture behavior

for near threshold fatigue crack growth compared to the

Paris regime.

The intrinsic transgranular fatigue crack growth character-

istics of AI-Li-Cu alloy 2090 rolled plate are independent

of crack path direction•

Single grain (microstructurally small) cracks, monitored by

the potential difference method, do not exhibit accelerated

fatigue crack growth rates; fatigue crack growth rate

threshold stress intensity range is similar to that for long
cracks.

Grain boundary microstructure inhibits the growth of ellip-

tical surface flaws contained in single grains• The fatigue

crack growth of through thickness cracks contained in single

grains is not influenced by high angle grain boundaries.

In moist air 2000 series alloys (including alloy 2090)

exhibit identical intrinsic fatigue crack growth character-

istics• 7000 series alloys exhibit similar but higher

intrinsic fatigue crack growth rates.

INTRINSIC FATIGUE CRACK GROWTH IN GASEOUS ENVIRONMENTS

Conclusions

Gaseous environments capable of producing hydrogen, viz.

moist air and water vapor, accelerate da/dN for alloy 2090.

Water vapor effects are pronounced near threshold with crack

growth rates accelerated at extremely low water vapor pres-

sures. At high aK, little environmental effect is observed.

Near threshold, high R results for alloy 2090 in water vapor

support a molecular transport model. Increased crack open-

ing at high mean stress enhances Knudsen flow, resulting in
increased crack tip environmental interaction. Other fac-

tors, such as highly localized crack tip reaction area may
also explain a reduced saturation value•

In embrittling environments alloy 2090 exhibits better

intrinsic transgranular fatigue crack growth compared to
alloy 7075.

18
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Surface films formed in oxidizing environments do not alter

fatigue crack growth rates by either impeding slip reversi-

bility or homogenizing localized deformation.

Fatigue crack growth in moist air is governed by a complex

embrittlement damage mechanism• Oxygen inhibits embrittle-

ment by water vapor in alloy 2090; possibly by competitive

adsorption or protective surface film formation.

INTRINSIC FATIGUE CRACK GROWTH IN AQUEOUS ENVIRONMENTS

Conclusions

AI-Li-Cu alloy 2090, peak aged, is susceptible to transgran-

ular corrosion fatigue crack propagation in aqueous 1% NaCl

under anodic polarization•

The effect of aqueous NaCI on fatigue crack growth rate

depends on stress intensity range. Near threshold, anodic

potential aqueous crack growth rates are greatly increased

compared to inert environment• At high aK environmental

effects are reduced•

Environmental effects on alloy 2090 are less severe than

those observed for high strength alloy 7075; the new alumi-

num lithium alloy behaves similarly to conventional 2000

series alloys•

Corrosion fatigue crack growth rates are relatively insensi-

tive to loading frequency, but are greatly reduced by ca-

thodic polarization•

The effect of load frequency, cathodic polarization and

Li2C03 addition suggest that crack tip films play as impor-

tant role in corrosion fatigue damage• Film formation

hinders the hydrogen embrittlement process which is presumed

to control environmental crack propagation•

High angle boundaries do not play an important role in

aqueous corrosion fatigue growth in alloy 2090.

Limited data suggest that short crack-chemical effects which

could enhance corrosion fatigue crack growth are not opera-

tive in alloys 2090 or 7075.

FRACTOGRAPHIC ANALYSES

Conclusions

For inert and oxidizing environments (viz:02, He, vacuum),

fatigue crack growth proceeds by iii slip band cracking•

This growth mechanism is independent of _K.

19
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For hydrogenous environments, changes in da/dN are associat-

ed with changes in crack tip damage mechanism. The fatigue

crack growth mechanisms depend on AK. At moderate to high

AK, fatigue crack growth is dominated by sub-grain boundary

cracking; lesser amounts of slip band cracking observed•

For near threshold, cracking is by a cleavage mechanism

which produces {I00) or {ii0} facets.

The changes in slope of the fatigue crack growth response

are associated with the presence of hydrogen.

Similar fatigue fracture morphologies for water vapor and

aqueous NaCl suggest hydrogen embrittlement; a dissolution

mechanism is unlikely•

Increased surface oxide thickness on fatigue fracture sur-

faces in oxygen, relative to vacuum, and no increase in

fatigue crack growth rate suggest that films are not damag-

ing.

CORROSION FATIGUE DAMAGE MECHANISMS

Conclusions

Environmental fatigue crack propagation in moist air, pure

water vapor and aqueous NaCl proceeds by a hydrogen embrit-

tlement mechanism• While anodic dissolution may contribute

to this mechanism, there is no evidence that this process is

uniquely causal of corrosion fatigue•

A hydrogen embrittlement process zone model, based on dislo-

cation transport and volume diffusion of hydrogen in a

portion of the crack tip plastic zone rationalizes the

observed corrosion fatigue crack propagation responses for a

variety of environmental conditions.

The size of the process zone relative to microstructure,

particularly subgrain size for the AI-Li alloy, determines

rates and microscopic paths for hydrogen enhanced corrosion

fatigue•

While surface films have no influence on fatigue crack

growth in alloy 2090, they may reduce hydrogen production

and associated crack growth rates by preferential formation

and blockage processes•

The effects of key variables (frequency and cathodic poten-

tial) are not simply explained by the process zone model•

Such variables are likely, however, to affect crack chemis-

try and hydrogen uptake; hydrogen embrittlement is probable,

but crack chemistry modeling is required to complement the

process zone ideas•
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Future Plans

Research on environmental fatigue crack propagation in

advanced aluminum alloys will be continued by Mr. Donald Slavik

and according to the plans outlined in the January, 1989 proposal
for the LA_ST Program. Further studies of crack tip damage

mechanisms, additional aluminum alloys and microstructures, and

metal matrix-ceramic short fiber composites will be emphasized.
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Program 2 ELEVATED TEMPERATURE CRACK GROWTH IN ADVANCED

POWDER METALLURGY ALUMINUM ALLOYS

William C. Port, Jr. and Richard P. Gangloff

Objective

The goal of this research program is to evaluate subcritical

crack growth and fracture toughness at elevated temperatures in

advanced aluminum alloys. As an extension of this goal, the

effect of microstructure or environment on crack growth and

mechanisms will also be examined.

Approach

Program approach was outlined in a previous report [i].

Research efforts over the past six month period included materi-

als acquisition and microstructural characterization, test tech-

nique refinement, initial testing and analysis of the room tem-

perature fracture/fatigue behavior of aluminum alloy 2618.

Research Progress and Results

Materials. As reported previously, a 0.57" thick plate of

aluminum alloy 2618 with a T651 temper was acquired from Cegedur

Pechiney with chemical analysis and complete mechanical proper-

ties documentation [I].

Additionally, two AI-Fe-V-Si powder metallurgy alloys manu-

factured by Allied-Signal, Inc. acquired with nominal composi-

tions (wt.%) [2]:

and
AI, 8.5 Fe, 1.3 V, 1.7 Si

AI, 12.4 Fe, 1.2 V, 2.3 Si

These alloys are designated FVS0812 and FVSI212, respectively,

and were provided by Dr. P. S. Gilman of Allied-Signal. Both

alloys are designed with thermally stable silicide dispersoids

for elevated temperature property stability. The FVSI212 has a

high volume fraction (36%) of the silicide for high strength and

stiffness, where the FVS0812 has a lower silicide volume fraction

(27%) for improved fracture toughness over the FVSI212 [2]. The

room temperature yield and tensile strengths for the FVSI212 were

found to be 73.8 ksi and 78.2 ksi, respectively.

Figures la throught ic are micrographs showing the micro-

structures of the three aluminum alloys. Figure la shows the

equiaxed grain structure of the as received 2618. The grains are

approximately 30-40 microns in size. Small precipitates of

CuMgAI 2 are barely visible along the boundaries while larger (i0-

20 mlcrons) FeNiAI 9 constituents are aligned parallel to the
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rolling direction. The insoluble and thermally stable FeNiAI 9

particles are present for mechanical properties retention with

increasing temperature.

Little microstructural detail can be seen in the optical

micrographs of FVS0812 and FVSI212 shown in figures ib and ic,

respectively. This is expected considering the ultra fine struc-

ture reported for the rapidly solidified powders used in these

alloys. However, the micrographs do show alignment of the prior

particle boundaries with the extrusion direction. The dimensions

of the aligned microstructure appear to be consistent with a

prior particle size expected from the 40 mesh filtering [3]

conducted in the processing of these powders.

Test Technique Refinement. The electric potential differ-

ence (EPD) technique will be used to measure crack growth in

compact tension (CT) test specimens during the fracture resist-

ance experiments conducted in this program. This laboratory,

however, has had no prior experience with the EPD method in CT

specimens. As there is no ASTM standard for EPD testing, ini-
tial evaluation of the accuracy and range of applicability of a

calibration polynomial was necessary. EPD calibration polynomi-

als are generally of the form [4]:

a/a O = f(V/V O)
where :

a = crack length,

a o = reference crack length,
V = measured potential,

V o = reference potential for crack length a o-

The calibration polynomial evaluated was originally developed by

Hicks and Pickard [5] and is being incorporated into ASTM

standard E647, Measurement of Fatigue Crack Growth Rates, by ASTM

committee E24.04.01 [4]. It has two forms, normalized for

specimen dimensions :

V/V o = 0.5766 + 1. 9169 (a/W) + -l.0712(a/W) 2 + 1- 6898 (a/W) 3

and

a/W = -0.5051 + 0.8857(V/V O) + -0.1398(V/Vo)2 + 0-0002398(V/Vo)3

where:

V o = reference potential for a/W = 0.241,
W = CT specimen width,

and all other variables are as previously defined. The first of

these two equations can be used to calculate V o from a known

crack length and measured potential. This V o can then be used in

the second equation to calculate crack length for any measured V.

Three tests were conducted using alloy 2618 to evaluate

these polynomials. Fatigue tests were run using the compliance
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technique to measure crack growth. Simultaneously, specimen
potential was periodically measured using DC potential drop
techniques. After correcting the compliance values of crack
length with several visual measurements, the crack lengths were
paired with potential measurements according to cycle count. The
potential data were normalized based on measured notch length and
notch Vo and were plotted with the polynomial. The results of
these tests are shown in Figure 2. There is good agreement
between the measured values and the polynomial over a wide range
of a/W.

Two subtle questions were addressed with the testing. The
first was the validity of the polynomial at high values of a/W.
As can be seen in Figure 2, even at a/W values greater than 0.8
there was good agreement between the measured values and the
polynomial prediction. Secondly, it was uncertain whether the
notch potential could be used, along with the notch length, to
calculate the normalizing potential, Vo. The initial finite
element analysis used by Hicks and Pickard to develop the polyno-
mial considered a crack in the specimen, and not a notch. There-
fore, theoretically, the polynomial should not be valid for a
notch. Experimentally, normalizing the data with consideration
of the notch potential causes less than a 5 percent difference in
overall crack lengths between measured and polynomial values, as
shown in figure 2. This is a convenient result as it allows
fatigue testing and precracking from the specimen notch using EPD
machine control.

Fracture/Fatigue Behavior of 2618. In all fracture mechan-

ics experiments for this project a standard CT type specimen with
W = 1.5 inches will be used. The thickness of the specimen is

0.3 inches with 16.7% sidegrooves (net thickness = 0.25 inches).

The sidegrooves will be necessary to prevent crack deflection

during the elevated temperature testing to be conducted in the

future.

While evaluating the EPD polynomial and precracking fracture

toughness specimens, a series of fatigue tests were conducted

with the 2618. They were run as decreasing AK tests with a

constant Kma x of approximately 12 MPav_-so as to avoid closure

problems near threshold. Results of these tests are shown in

Figure 3 which was published by Piascik [6]. Crack growth rates
for the 2618 are slightly higher than those for other 2000 series

aluminum alloys, but still lower than those for the high strength

7000 series alloys. The fatigue threshold, though not well

defined, appears to fall in the same _K range as with the other

aluminum alloys.

Three room temperature fracture toughness tests were

performed yielding valid KIC values for the as received 2618 in

the LT orientation. A load-load line displacement profile for

one of these tests is shown in Figure 4. The KIC values averaged

18.4 MPa/m, ranging from 17.2 MPaV-m-to 20.2 MPaV-m-. This is

significantly lower than the expected toughness of 25.2 MPaq-m
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[7]. The load-load line displacement profile confirms visual

observations that there was little macroscopic plasticity or

stable crack growth prior to unstable crack growth and final

fracture• The overload fracture surface was flat with practical-
ly no shear lips.

Figure 5 is an SEM image of the overload fracture surface.

The high volume percent of constituents that was seen in Figure

la can be seen here as well. The constituents served as void

initiation sites, as evidenced by the fact that there is at least

one at the bottom of most dimples in the fractograph. The high

volume fraction of large constituents providing many void initia-

tion sites is the reason for the poor fracture toughness of the

material. This high volume percent of constituents is not unusu-

al for 2618-T651, so the reason for the difference between the

toughness reported here and that expected is uncertain•

Plans for the Cominq Report Period

The elevated temperature testing apparatus described

previously [8] is now fully instrumented and operational•

Research during the next reporting period will center on studying
the effect of temperature and displacement rate on the R-curve

behavior of aluminum alloys 2618, FVS0812, and FVSI212 in a moist

air environment. Figure 6 is a preliminary test matrix for this

work showing the seven temperatures and four displacement rates

that will be used in conducting ten tests• The test matrix may

change due to limited material availability and initial results•

The fracture mechanics testing will be coupled with SEM fractog-

raphy to correlate toughness results with microstructural obser-
vations•

Additionally, the degree requirements of writing and defend-

ing a research proposal, and taking the PhD comprehensive exam
are planned for this fall.
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Proqram 3 DEFORMATION AND FRACTURE OF THIN SHEET ALUMINUM-

LITHIUM ALLOYS: THE EFFECT OF CRYOGENIC

TEMPERATURES

John A. Wagner and Richard P. Gangloff

Introduction

Cryogenic tanks are responsible for a large portion of the

structural weight of current and proposed launch vehicles. As

stated in the most recent progress report of this grant [I], it

is envisioned that significant weight and overall cost savings

could be realized in future launch vehicles by using advanced

forming and joining techniques and novel alloy systems in the

fabrication of cryogenic propellent tanks. An ongoing program at

NASA-LaRC is evaluating the potential of superplastic forming

(SPF) a 2090 based alloy with a minor alloy addition of indium in
an effort to reduce the cost of cryogenic tanks. The objective

of Program 3 is to understand and optimize the fracture resist-
ance of AI-Cu-Li and Al-Cu-Li-In alloys processed for thin sheet

cryogenic tank applications.

Results

Plate, i/2x47x34", and sheet, i/8x17x34", have been proc-

essed under various schedules at Reynolds Metals and delivered to

NASA-LaRC. Compositions of these alloys are:

AI-2.65Cu-2.17Li-0.13Zr-0.05si-0.05Fe

Ai-2.60Cu-2.34Li-0.16Zr-0.04Si-0.05Fe-0.17In (wt %)

The material received was given a thermomechanical treatment

(TMT C) or was solution heat treated and stretched approximately

3%. TMT C is a practice used to enhance the SPF behavior of sheet

material and leaves the alloy in the overaged condition. Mechani-

cal properties were evaluated using uniaxial tensile and notched

Kahn Tear tests at room temperature and -185 C. Specimens were

processed according to TMT C and then solution heat treated at

555 C and aged at 160 C for 20, 75 and 120 hours. Results are

given in a paper contained in Appendix I.

At room temperature, alloying with indium had no measurable

effect on yield strength, but increased the ultimate strength of

2090 based alloys at longer aging times. The addition of indium,

however, was not as effective as using a post-solution heat

treatment stretch to increase strength. Another observation that

can be made from room temperature uniaxial tensile tests is that

there was a continuous increase in yield strength and ultimate

strength with increasing aging times for both alloys. This

suggests that substantial overaging did not occur even at an

aging time of 120 hours.
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The observation that indium enhances the room temperature

ultimate tensile strength, but had no effect on yield strength

suggests that indium promotes work hardening in these alloys.

This hypothesis, however, is complicated by the fact that the

microstructure of the 2090+In was partially recrystallized. The

lower yield strength typically associated with a partially re-

crystallized structure could offsett a beneficial effect indium

on room temperature yield strength. The extent to which room

temperature tensile behavior is unique to TMTC processed material
remains to be defined.

At cryogenic temperatures, there is an improvement in yield

and ultimate tensile strength of 2090 baseline and 2090+In al-

loys. Increased strength at cryogenic temperatures is character-

istic of most AI-Li alloys. Moreover, the addition of indium

significantly increased the ultimate and also notably the yield

strength at cryogenic temperatures compared to the baseline

alloy. The mechanism by which In improves yield strength at

cryogenic temperatures remains to be determined.

The Kahn Tear test was used to rank alloys and tempers in

terms of relative toughness because of its advantage in terms of

simplicity and specimen size. Fig. 1 shows the variation in the

tear strength to yield strength ratio with temperature for

2090+In in three aging conditions. The tear strength to yield

strength ratio (TS/YS) measures the resistance of a material to

fracture in the presence a stress raiser [2]. 2090+In exhibited

a significant decrease in the TS/YS ratio with increasing aging

times at room and cryogenic temperatures. Similar results were

obtained for baseline 2090. The decrease in toughness with

increasing aging time is typically attributed to an increased

yield strength and to an increase in grain and subgrain boundary

precipitates which promote intergranular fracture [3]. Both

alloys also exhibited a decrease in relative toughness at cryo-

genic temperatures as indicated by the decrease in the TS/YS

ratio, unit initiation energy and unit propagation energy.

Previous investigations on AI-Li plate alloys have shown an

increase in toughness with decreasing temperature and have at-

tributed the increase to enhanced intergranular splitting [4] and

higher strain hardening rates [5] with no associated change in

fracture mode. Fractographic analyses were conducted in the

current study to determine the dominate fracture mode and the

degree of intergranular splitting.

At room temperature, the macroscopic crack path of Kahn Tear

specimens exhibited significant out of plane crack deviation,

Fig. 2A. In general the crack path tended to become more planar

as the aging time was increased. Microscopically, fracture in

the baseline alloys was dominated by transgranular shear (Figs.

2B and 2C) and appeared to be crystallographic in nature.

The amount of intersubboundary (ISB) cracking increased with

increasing aging time, correlating with the move planar crack

paths. In comparison at cryogenic temperatures the relative
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toughness decreased and the macroscopic crack path was almost
always planar, Fig. 3A. Furthermore, there was a change in the
fracture mode of 2090 baseline from transgranular shear at room
temperature to predominately intersubboundary failure at cryogen-
ic temperatures, Figs. 3B and 3C, which suggests that ISB is a
lower energy event. Similar observations have been made in a
previous study on 2090 sheet thermomechanically processed for SPF
applications [6]. The significant increase in yield strength at
cryogenic temperatures increases plane strain constraint and slip
localization and, therefore, leads to a fracture surface which is
more planar/brittle. The degree of intergranular splitting was
minimal for both alloys.

Specimens of 2090+In, aged for 75 hours at 160 C and tested
at room temperature, had a mixed fracture mode of ductile shear
and ISB fracture, Fig. 4. The tendency for ISB fracture at room
temperature was reflected in the decrease in the relative tough-
ness of the indium bearing material. Low energy ISB fracture may
be promoted in these alloys by the reported increase in the T1
number density [7] causing a T1 PFZ in which slip would become
localized. A mechanism to account for the decrease in toughness
at cryogenic temperatures and with minor addition of indium being
investigated.

Conclusions

Results for this period are summarized as follows:

A mechanism for the increased hardness and strength of

2090+In could be related to increased work hardening.

For alloys processed according to TMT C, solution heat

treated and aged, indium additions to base chemistries

promote recrystallization.

2090 baseline and 2090+In exhibit a decrease in toughness

at cryogenic temperatures, as measured by a decrease in the

Kahn tear strength to yield strength ratio.

Low relative toughnesses are associated with low energy

intersubboundary failure. Beneficial splitting does not

contribute to sheet toughness for the conditions examined.

Future Plans

Future plans will specifically focus on the following areas:

Conduct preliminary J-integral testing on select 2090

baseline and 2090+In alloys at Fracture Technology

Associates.

- Initiate cryogenic J-integral testing at NASA-LaRC.
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•

•

•

•

o

•

•

Conduct detailed microstructural analyses of 2090 and

2090+In using transmission electron microscopy.

Conduct texture analyses of selected sheet and plate alloys•

Identify the mechanism to account for the decrease in

toughness for thin sheet AI-Li alloys at cryogenic

temperatures•
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Proqram 4 MEASUREMENTS AND MECHANISMS OF LOCALIZED AQUEOUS

CORROSION IN ALUMINUM-LITHIUM ALLOYS

Rudolph G. Buchheit, Jr. and Glenn E. Stoner

Objectives

As cited in previous reports [1,2,3], the objectives of this

study have been:

I) to develop new or adapt existing techniques to

surmount the difficulties associated with measur-

ing and monitoring localized corrosion processes;

2) to utilize these techniques to understand the

processes and mechanisms of localized corrosion

and embrittlement of aluminum-lithium alloys.

As a result of discussions with the examination committee at

the student's dissertation outline defense held June 23, the

primary task of this program will be focused on studies of local-

ized environment chemistry and electrochemistry. The primary aim

of the study will be to gain an understanding of how localized

environments develop and how they contribute to embrittlement of

these alloys. Topics of special interest are:

I) effect of cation hydrolysis on crevice pH

2) effects of solids precipitation on crevice solution

chemistry

3) short crack versus long crack chemistry

4) embrittlement in carbonate environments.

Approach

A detailed research proposal is being formulated for submis-

sion to the student's advisory committee. The experiments will

concentrate in two major areas. These are polarization in simu-

lated crevice environments and simulated crevice experiments.

Polarization of bulk phases in simulated environments will

be used to:

* assess the corrosion behavior of phases thought to be

important to the localized corrosion process

* form anodic surface films in selected environments

which will be characterized in situ using electrochemi-
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cal impedance spectroscopy and ex situ using auger
electron surface analysis and X-ray photoelectron
spectroscopy (to be performed at Johns Hopkins Univer-

sity).

A new scanning electron microscope facility is planned

to be in operation at U. Va. in the early fall. It will

be equipped with a windowless solid state EDS detector
which will be able to routinely detect oxygen and

carbon. It is anticipated that this facility will also

be utilized for ex situ surface analysis.

Goal. Use corrosion rate data from polarization experiments

to develop mechanisms for crevice corrosion processes.

Goal. Investigate the cause of the active-passive transition

observed in polarization experiments performed with aluminum

alloys exposed to lithium carbonate (Li2C03).

Simulated crevice experiments will be performed to measure:

* crevice corrosion current vs. time

* crevice potential vs. time

* crevice pH versus time

in long and short simulated crevices in selected bulk environ-

ments. Measured responses obtained from simulated crevice experi-

ments will be compared to responses calculated from chemical and

electrochemical equilibrium (initially) or kinetics (ideally).

Goal. Identify chemical and electrochemical processes which

dominate the crevice environment in aluminum-lithium alloys.

Results

Corrosion Behavior of T 1 (Al2CuLi). Two mechanisms have been

proposed for the preferential subgrain boundary corrosion of AI-

Li-Cu alloys. The first mechanism proposes that T 1 (A12CuLi)

precipitates on the subgrain boundaries selectively dissolve

resulting in preferential subgrain boundary corrosion. The second

mechanism proposes that a copper depleted zone forms along sub-

grain boundaries which is susceptible to corrosion because of the

lack of copper.

The objective of this study was to synthesize T 1 in bulk

form so that its corrosion behavior could be assessed by conven-

tional electrochemical techniques. The corrosion behavior of the

synthesized T 1 was then compared to that of the matrix phase and

a copper depleted phase. The proposed mechanisms for subgrain

boundary corrosion were evaluated in terms of the measured corro-

sion behavior of these phases.
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Open circuit measurements, cyclic potentiodynamic polariza-
tion and corrosion rate determinations were used in this study.

Solution heat treated (SHT) 2090 was to simulate the matrix

phase, pure aluminum was used to simulate the copper depleted

phase (a worst case scenario considering the ennobling effects of

copper in aluminum) and the synthesized T 1 was used to simulate

the precipitate phase.

The details of the experimental procedures used, results

obtained and discussion of the results are presented in the paper

appended to this report. A brief summary of the results and

conclusions of the study are presented below.

Based on open circuit potential, potentiodynamic polariza-

tion and corrosion rate determinations, T 1 is an extremely active

phase with a corrosio_ potential of -ii00 mV_c E and a corrosion
current of 0.i mA/cm _ in 3.5 w/o NaCl solutlon. The corrosion

current of T 1 is roughly two orders of magnitude greater than
that for a copper depleted zone of the a-matrix phase in 2090.

These data support a mechanism for subgrain boundary corrosion

based on selective T 1 dissolution.

Measurements of corrosion rate versus pH for T 1 show that
corrosion rate is independent of pH over the range of pH3 to ii.

Visual examination and polarization behavior of bulk T 1

specimens suggest that copper dissolves and then deposits back on

the electrode surface during polarization experiments.

Polarization in Carbonate Environments. Moran has shown that

constant immersion SCC Time To Failure (TTF) for peak aged 2090

in 0.1 M Li2CO 3 + 3.5 w/o NaCl is greatly accelerated, but sur-

face attack by pitting is absent [4]. Constant immersion TTF

specimens exposed to straight 3.5 w/o NaCl solution gave aggres-

sive surface attack but long times to failure. Several environ-

ments were utilized in Moran's study in an attempt to isolate the

effects of CO3 _- and Li +. The compositions and pH values of these
environments are listed in Table 1.

In the present investigation, specimens of ii00 aluminum

(intended to simulate the a-matrix phase of the alloy) and bulk

T 1 (simulating the subgrain boundary phase) were subjected to

potentiodynamic polarization in each of the environments listed.

Pertinent corrosion data are presented in Table i.

In general electrochemical polarization results do not

provide a reasonable assessment of SCC performance. However, the

results from polarization experiments performed on isolated bulk

phases present some interesting correlations to constant immer-

sion TTF experiments with peak aged 2090. Polarization data are

presented in Table i. Only the carbonate results are discussed

below.

Exposure of peak aged 2090 to a Li2CO3/NaCI aqueous environ-
ment under constant immersion conditions caused rapid failures (3
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of 4 specimens failed in less than 24 hours). Furthermore, the
specimens showed almost no surface damage; even after prolonged
exposure to the environment. A comparison of passive current
densities listed in Table 1 shows that bulk T1 has a much higher
value than ii00 AI. The low corrosion rate-of the ll00 A1 is
consistent with the occurrence of little surface damage in TTF
experiments. The rapid corrosion of T1 is consistent with a
subgrain boundary dissolution SCC initiation process which has
been proposed to operate in AI-Li-Cu alloys.

A second interesting feature of the polarization data is the
existence of an active-passive transition for Ii00 A1 in the
Li2CO3/NaCl environment (Figure i). This type of polarization
curve, uncommon in naturally occurring aqueous environments, has
also been reported by other workers (5,6).

Polarization experiments for ii00 A1 and T1 in Na2CO3/NaCl,
pH l0 environments shows that the passive currents are large and
nearly equal. In TTF experiments, specimens are severely corroded
but withstand breaking for periods greater than 60 days.

These polarization results, taken with TTF experiments,
strongly suggest that:

I) localized dissolution plays an important role in

accelerating failure by SCC

2) Li2co3 is the primary candidate as the passivating
specles for s-aluminum in 2090. Passivation of the

a-Al phase exacerbates SCC by helping to maintain

sharp cracks along subgrain boundaries.

Future work

Bulk Phase Corrosion Experiments. Bulk phase corrosion

experiments will be continued with an investigation of the corro-

sion behavior of the T 2 precipitate phase. While it is known

that this phase is less prevalent in 2090 than T 1 in peak aged

tempers, it is an important high angle grain boundary phase. Due

to its stoichiometry, it is likely that this phase will be as (or

more) reactive with aqueous environments as T I.

The proposed plan is similar to that used in the T 1 study
and includes:

i) synthesis and verification of the phase

2) refinement of specimen preparation techniques

3) documentation of corrosion behavior via polarization
in standard environments

4) documentation of the variation of corrosion rate

versus pH.
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Localized Environment Studies. As described above, a de-

tailed research proposal regarding the chemistry and electrochem-

istry of crevice corrosion in Ai-Li-Cu alloys is being formulated

for submission to the advisory committee• This proposal will be

forwarded to the contract monitors at NASA Langley upon comple-

tion and approval by the committee.

References.

. R.P. Gangloff, G.E. Stoner and R.E. Swanson, "Environment

Assisted Degradation Mechanisms in AI-Li Alloys", University

of Virginia, Report No. UVA/528266/MS88/101, January, 1988.

• R.P. Gangloff, G.E. Stoner and R.E. Swanson, "Environment

Assisted Degradation Mechanisms in Aluminum-Lithium Alloys",

University of Virginia, Report No. UVA/528266/MS88/102,

June, 1988.

• R.P. Gangloff, G.E. Stoner and R.E. Swanson, "Environment

Assisted Degradation Mechanisms in Advanced Light Metals",

University of Virginia, Report No. UVA/528266/MS89/103,

January, 1989.

o J.P. Moran, "An Investigation of the Mechanisms of Localized

Corrosion and Stress Corrosion Cracking of Ai-Li-Cu Alloy

2090", Research Summary, University of Virginia, August,
1988.

5. J. Gui, T.M. Devine, Scripta Met., 21, 1987, p. 853.

. J.G. Craig, R.C. Newman, M.R. Jarrett, N.J.H. Holroyd,

"Stress Corrosion Cracking and Pre-Exposure Effects in

Ai-Li-Cu-Mg Alloy 8090", Third Int. Conf. on Environmental

Degradation of Engineering Materials, PSU, University Park,

PA, 1987.

43



Polarization in Carbonate Environments

Environment ECORR ipASS

pH (mVsCE) 0,A/cm 2 )

A] T 1 AI T 1

IJ2CO 3 A 10 -1600 -1180 0.1 40

Li2CO 3 D 10 -1702 -1100 < 1 40

Na2CO 3 A 7-9 -967 -1001 20 70

Na2CO 3 A 10 -1611 -1129 500 500

EBR

(mVscE)

AI _T1

-600 -720

- -720

-680 -650

> -500 -750

Table i. Polarization data for pure aluminum and synthesized bulk

T 1 in various chloride, carbonate and sulfate environments
-05r

-1.0
CD
r/]

q_

-1.50

-2.0

10-9 10-8 10-7 10-6 10-5 10-'4 10--3 i0-2

Logi (A/omZ)
Figure i. Polarization curve for pure aluminum in deaerated 0.1M

Li2CO 3 + 3.5 w/o NaCI solution.
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Program 5 AN INVESTIGATION OF THE LOCALIZED CORROSION AND

STRESS CORROSION CRACKING BEHAVIOR OF ALLOY

2090 (A1-Li-CU)

James P. Moran and Glenn E. Stoner

;ntroductioD

This report represents the second contribution from this

project to NASA Grant NAG-I-745. This project is an ongoing

dissertation research effort, with an expected completion date of

Sept./Oct., 1989. On March 20, the student presented his disser-

tation outline to his examining committee. The discussions at
that time focused on how well the work done to date has addressed

the primary objectives of the project, as well as what further

work was required to successfully complete the dissertation. A

summary of those discussions is being compiled by the student,

and will be submitted to the committee in early-July. The follow-

ing summarizes the research progress made during this reporting

period.

Objectives

The objectives of this project are as follows :

i) To characterize the localized corrosion and SCC initia-

tion behavior of alloy 2090.

2) To gain an understanding of the role of localized

corrosion phenomena and associated occluded cell envi-

ronments in the mechanisms of initiation and early-

stage propagation of stress corrosion cracks in 2090.

Approach

As outlined in more detail in previous reports [I,2], re-

search efforts have focused in the following areas :

1) Anodic polarization of alloy 2090 and post-exposure

microscopy to determine the pitting behavior and local-

ized corrosion surface morphology in selected environ-

ments.

2) Constant immersion time-to-failure (TTF) stress corro-

sion cracking (SCC) experiments in selected CI-/C03 =
environments.

3) Pre-exposure TTF experiments : constant immersion in

NaCl for 7 days, followed by exposure to lab air (with

and without atmospheric C02).
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4) Slow strain rate (SSRT) SCC tests in selected environ-

ments.

Progress during this reporting period has focused on three

areas :

I) Accumulation of SSRT data in NaCI and NaCI/Li2CO 3

environments. SSRT experiments have been performed on

the underaged temper (UA) only, due to the inherent

scatter in the peakaged data [1,2].

2) Interpretation of the TTF data reported earlier

[I,2,3], with particular interest in the role of CO 2 in

the SCC initiation process.

3) Preliminary fractography on SCC specimens.

Results

SLOW STRAIN RATE EXPERIMENTS

The effect of strain rate on the ductility of alloy 2090-UA

is illustrated in Figures 1 and 2, for the following environ-

ments, respectively: NaCI, applied potential =-715 mV vs. SCE,

and NaCI/Li2CO 3 under free corrosion. Each plot includes th_
ductility daha gathered in dry argon, at a straln rate of 5.4E-"

/sec. The presence of Li2co 3 significantly affects the SSRT
behavior, particularly at slow strain rates, where ductility is

reduced to zero. Together, these plots represent the two classic

curve shapes expected from SSRT testing [4], with the NaCl curve

representative of a film dissolution mechanism and the

NaCI/Li2CO 3 curve indicative of hydrogen embrittlement.

Consider first the NaCl curve. Although only roughly de-

fined, the curve reveals a trough of minimum ductility, with

increased ductility at both slower and faster strain rates. As

the strain rate is decreased from its maximum, increased time is

available for dissolution to occur, per film rupture event. This

increases SC crack growth rates and decreases ductility [4].

Eventually (at strain rates lower then roughly 2E-6), the film

rupture frequency (i.e., strain rate) becomes sufficiently slow

such that selective dissolution is not maintained at the crack

tip and competitive dissolution of crack tip walls ensues. This

produces a blunted fissure, effectively reducing the stress

concentration and SC crack growth rates, and increasing ductili-

ty.

For NaCl/Li2CO 3, on the other hand, the continual decrease
in ductility is similar to that observed for hydrogen embrittle-

ment (4). Decreasing the strain rate increases the specimen

exposure time, thereby allowing greater accumulation of hydrogen

and its associated detrimental effects on ductility. There is,

however, one problem with this hypothesis. The specimens exposed

at the slower strain rates are fracturing very early along the
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elastic portion of the stress-strain curve (as low as 10% of
yield). Accordingly, the overall exposure times are only 2-3
times that of the faster strain rates, where some ductility is
maintained. Therefore, the greatly increased exposure times
required to increase cummulative hydrogen damage are not at-
tained, suggesting that hydrogen is not the predominant mecha-

nism.

As an alternative to hydrogen embrittlement, an argument can

be made for a film dissolution mechanism. The passivating ef-

fects of Li2CO 3 have been documented by this student [1-3, and

see below] and other researchers [8]. At slower strain rates,

the presence of Li2CO 3 will improve crack wall passivity, thereby
maintaining a sharp crack tip, contrary to the straight NaCI

case, where blunted crack tips are produced.

Further experiments are required to clarify the roles of

film rupture and hydrogen. For example, unstressed specimens

could be exposed to NaCl/Li2CO 3 for long time periods, then
pulled under inert SSRT condftions. Ductility decreases under

these conditions would suggest that hydrogen does dominate the

fracture process.

ROLE OF CO 2 AND CARBONATES IN THE SCC CRACK INITIATION
PROCESS

This investigation was initiated based on a study performed

by Craig et al. [5,6]. The pertinent aspects of the work per-

formed by Craig, et al. [5,6] are reviewed in the Fall '88 report

(pg. 25) [i]. In summary they found that 8090, constantly im-

mersed in NaCl solution, would not stress corrode. Removal from

solution after several days and placement in lab air resulted in

very quick fracture, while removal and placement in a CO2-free

environment did not produce fracture.

The experiments discussed above were repeated on 2090 by

this author, and the results were perfectly duplicated. They are

summarized in previous reports [1,2,3]. Constant immersion in

NaCl containing 0.1M Li2CO 3 yielded greatly accelerated failure

times, relative to straight Natl. Those immersed in straight

NaCl suffered from severe pitting and surface discoloration,

while those in Li2CO 3 exhibited n_oo evidence of macroscopic local-
ized corrosion.

To isolate the role of C03 =, 0.1M Na2CO 3 was substituted for

the Li2CO 3. The results were dramatically different. Severe

surface attack and discoloration occurred almost immediately, and

fracture times were significantly increased. Many samples did

not fracture after 30 days (similar to straight NaCl). Clearly,

there is a major difference between these two cations. To

isolate the role of Li-, LiCl was added to NaCl solution (pH=10).

The NaCl concentration was altered to keep a consistent Cl-

concentration. SCC times to failure for this environment slight-
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ly increased, relative to NaCl, but were still far greater than
Li2CO 3•

Perhaps the most significant result of this work is the

effect of atmospheric _%;_d the see behavior of pre-exposedspecimens. With this , the following discussion will
propose a series of critical events occurring during the pre-
exposure process, with emphasis on the role of CO 2 in the forma-
tion of an SC crack. A more detailed discussion is presented in

reference 3.

Upon immersion in NaCl, intergranular fissures initiate at

surface flaws and propagate inter-subgranularly. In the presence

of a bulk solution, oxygen reduction on the external surfaces

will be the primary cathodic reaction. Therefore, cathodic con-

sumption of H + within the fissure will be minimal, and the oc-

cluded pH should be governed by AI(III) hydrolysis equilibria

(see Fig. 3). These equilibria predict a steady-state pH=4, as

measured (Fig. 2, ref. 3). The rate of metal dissolution should

continue to increase as the pH decreases, thereby inhibiting the

formation of a sharp crack tip.

Removal of the bulk solution forces the cathodic reaction

(hydrogen evolution) to occur within the fissures. The consump-

tion of H + gradually increases the fissure pH, as measured (Fig.

3, ref. 3). As pH increases, the solubility of A1 (III) de-

creases (see Fig. 3), most likely promoting precipitation of

AI(OH) 3. As the pH rises above 7 (in the presence of Li+),

AI(III) hydrolysis equilibria predict the precipitation of the

insoluble LiAIO 2 .

Although the above series of events predicts precipitation

of at least two species, it is unlikely that these species play a

major role in the passivation of fissures, since their precipita-

tion will occur with or without the presence of atmospheric CO 2.

On the other hand, atmospheric CO 2 will directly affect the

concentrations of dissolved CO 2 and its ionic species (see Fig.
4). As the pH increases (due to hydrogen evolution), the per-

centage of CO 2 in its ionic forms will increase. This is where

the presence of atmospheric CO 2 becomes critical. Figure 5

predicts the total concentrations of dissolved CO 2species with

and without exposure to atmospheric CO 2. From these calcula-
tions, it is evident that as the alkalinity of a fissure in-

creases, the concentrations of bicarbonate and carbonate will be

orders of magnitude greater in the presence of atmospheric CO 2.

Given the fact that atmospheric CO 2 will significantly

increase the carbonate/bicarbonate concentration within fissures,

the next issue to be addressed is the role of this increased con-

centration in the SC initiation process. The evidence suggests a

mechanism of fissure passivation by precipitation of Li2CO 3.

Upon removal of the bulk solution, continued metal dissolution

should increase the local Li + concentration ( [Li +] ), and expo-

sure to CO 2 will increase [CO3=]. Given the low solubility of

48



Li CO (pKD=2.74) [7], it is likely that precipitation of Li2CO 3
co_id3occttr, and its passivating nature has been documented by
this student [1-3] and other researchers [8].

As an example, consider a local pH of 10. Without CO2,
precipitation is predicted at [Li +] = 13 Molar; however, exposure

to CO 2 would allow precipitation at [Li +] = 0.i Molar. Unfortu-

nately, this lithium concentration is roughly 50 times higher

than measured values for 8090 crevices [9], and a high pH is not

achieved (Fig. 3, ref. 3). Nevertheless, it is likely that the

local pH and lithium concentration at the base of a fissure could

be greater than the measured averages, thus exceeding the local

solubility. In addition, the high total ionic concentration will

tend to decrease the solubility [7].

The constant immersion data is consistent with this argu-

ment. Exposure to NaCI/LiCI did not promote failure.

NaCI/Na2CO 3 also did not promote failure, and the solubility for

Na2CO 3 is 2-3 orders of magnitude higher than Li2CO 3 (7). Nei-
ther lithium alone nor carbonate (and its buffered pH) alone was

a sufficient requisite for the passivity of fissures.

FRACTOGRAPHY OF SCC SPECIMENS

Preliminary fractography of TTF specimens has revealed

several points of interest. Firstly, pre-exposure specimens

(i.e., immersion in NaCI, followed by lab air exposure to fail-

ure) revealed the presence of a large pit at the smooth bar

surface, with a smooth, corroded region (SCC) emanating from it.

This morphology supports the arguments presented above, namely

that SCC cracks initiate from blunted fissures/pits under proper

environmental conditions. Secondly, the SC crack surface mor-

phology for pre-exposure specimens is very similar in appearance

to those specimens immersed in NaCI/Li2CO 3. Finally, the values

of approximated stress intensities for observed SC cracks were

consistent with reported fracture toughness values for 2090,
short transverse.

Although these results are encouraging, it must be stressed

that they are preliminary. An extensive fractographic investiga-

tion will be performed during the upcoming reporting period.

Summary

Progress during this reporting period has focused on inves-

tigating the role of CO 2 and its associated ionic species in the

SCC initiation processes. An argument for improved passivation

of actively corroding fissures (via precipitation of Li2CO3),

thereby producing a sharp crack tip, was presented. Both con-

stant immersion TTF SCC and SSRT experiments offer experimental

support for this argument.
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Future Work

Although there is a great deal of evidence to support the

mechanisms proposed in the report, several further experiments

are planned to solidify the argument, and complete the disserta-

tion. They are summarized as follows:

io Microscopic examination• This will include optical

cross-sections of tensile bars to observe blunted

fissures and hopefully cracks emanating from them.

Also, extensive fractography needs to be performed on

both TTF and SSRT specimens.

• Xn-Situ experiments. In a cooperative effort with R.

Buchheit, we will attempt to optically view (using a

long working distance microscope) the growth of cracks

from predetermined blunt fissures, using the environ-

ments of interest discussed above•

• Complete SSRT work. This will include the unstressed

pre-exposure experiments discussed above, to aid in

clarifying the role of hydrogen•

• Complete dissertation. The Research Summary [i] com-

piled in 1988 will serve as the foundation of the
dissertation• The literature review needs to be updat-

ed, and expanded; the results gathered over the last

year need to be included; and the discussion section

needs to be greatly enhanced•
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OBJECTIVE

The objective of this study is to characterize and under-

stand the effects of hydrogen on the deformation and fracture

behavior of 2090 and 2219, especially at low temperatures•

APPROACH

As outlined in our previous report [i], research efforts

have focused on the following areas:

i. Evaluate various methods for cathodic charging;

• Evaluate effect of temperature on fracture behavior in Charpy

tests;

• Investigate stress state effects in deformation and fracture

processes.

HYDROGEN CHARGING STUDIES

Both 2219 and 2090 alloys have been sectioned and mounted in

a red Bakelite powder. Holes were drilled to allow for elec-

trical leads to be attached to the specimens. The samples were

ground to 600 grit paper and polished using 1 mm diamond paste.

Both potentiostatic and potentiodynamic tests were performed on

an EG&G Model 342 test system.

Test specimens were cathodically charged using the guide-

lines proposed by Dull and Raymond [2], and several aqueous sol-

ution were tested. The tests have been performed using deionized

water mixed with HCl, H2S04, and also NaOH. The pH values were
varied and tests were run with or without salt added. Prior to

the potentiostatic experiments, we constructed potentiodynamic

curves in order to determine the corrosion potentials.

Initially, a cathodic overpotential of -300 mV was applied

to the samples. In each case, pitting corrosion damage formed at

the surface of the sample after a very short time (from 5 to 15

minutes depending on the pH of the solution). Then, following a

paper presented by Dr. S. S. Kim [3], a potential of -3 volts in

a solution of 0.04N HCI was used. Testing the samples in that

condition seems to give no macrodamage at the surface. New

experiments are now being performed to analyze the microdamage

and to determine the concentration of hydrogen for various charg-

ing times. In order to analyze the microdamage, we are using an

optical roughness analyzer which provides results as shown in

Figure i. Figure la shows the two-dimensional view of the

surface. A statistical analysis is also given with the values of

roughness parameters, including RMS, RA, radius of curvature,

radius of cylinder, wavelengths, and the maximum difference

between valleys and peaks. Figure ib shows the same analysis but

for a three-dimensional view. Figure ic shows an analysis of the
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ten deeper valleys and the ten higher peaks. These figures show
results for a sample ready to be charged. A comparison of these
results with those after charging in the HCl solution (as well as
others) will be useful in assessing the extent of surface damage.
SEM will be used in order to confirm the results from this exper-
iment. Two aqueous solutions have been chosen for the future
tests: 0.04 N HCI, and also a 0.1N NaOH solution containing a
small amount of As203 as hydrogen recombination poison [4].

In parallel to the roughness analysis, some other tests will
be done to measure the amount of hydrogen as a function of charg-
ing time. SIMS or gas chromatography will be used for the meas-
urements.

CHARPY IMPACT TESTS

Charpy samples from the 2090 alloy in the peak age condition
were machined with dimensions of 55x10x10 mm. A notch of 2 mm

depth was cut with a notch root radius of .25 mm for the four

orientations L-T, T-L, L-S, and T-S. The samples were heated in

an air furnace to various temperatures prior to testing with a

GRC Model 730-I instrumented impact test machine, with a data

acquisition and analysis system running on an IBM-PC. This

system allows for the separation of the total impact energy into

initiation and propagation components [5].

Two temperatures were tested to evaluate the effect of

orientation: 25°C (70°F) and 200°C (392°F). The results are

presented in Figure 2. The energy for crack initiation seems to

be virtually the same for three orientations (Figure 2a), from 1

to 3 ft-lb for both temperatures. The initiation energy at 25°C

for the LS orientation is somewhat higher than for the others.

At 200°C, the initiation energy for the LS orientation is some-

what lower than for the other orientations. The propagation

energy for the L-S orientation is much greater than for the

others, with the T-S orientation having a somewhat greater re-

sistance than T-L or L-T (Figure 2b). The propagation energy

curves are very similar to the total energy curves (Figure 2c).

Moreover, the L-S samples did not completely break as shown in

Figure 3. The failure mode of the T-S orientation was similar to

that of the L-S samples, but total separation occurred for T-S.

Fracture in both of these orientations proceeded by ductile

intergranular separation along the short transverse plane of the

pancake-shaped grains.

Because of the pancake-shaped grains, all four orientations

showed substantial tearing along grain boundaries. The T-L and

L-T orientations have been used for further impact studies.

Tests were carried out for the T-L and L-T orientations for addi-

tional temperatures; 25°C, 200°C, 300°C, 350°C, 400°C, and 500,C.

Figure 4 shows a dramatic increase in total impact energy at

about 350°C. We are evaluating these specimens for possible

microstructural changes. We are currently conducting tests at

low temperatures (from -200 to 0°C). Because of the loading
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orientation in storage tank applications, these tests will focus
on L-S and T-S orientations.

HEAT TREATMENT EXPERIMENTS

Heat treatment tests have been performed on the 2219 alloy

in order to choose the best conditions of time and temperature

for the UA, PA, and OA conditions. We solution heat treated the

8xSx8 mm samples at a temperature of 435°C for one hour before

quenching into room temperature water, followed by room temper-

ature aging for one week. Microhardness tests (VHN) were used to

follow the change in mechanical properties of the alloy after

heat treatment. Figure 5 shows the microhardness results plotted

as a function of aging time and temperature. It appears that two

hardening peaks exist for this alloy, the first at a temperature
of 205°C for a time of 31 minutes and the second at the same

temperature and for a time of 16 hours and 40 minutes. From

these results, the peak age condition was shown to result from

aging for a time of 16 hours and 40 minutes at a temperature of
205°C. Additional work is being done in order to confirm

those results, since Alcoa has informed us that the peakage

condition occurs with aging at 177°C for 18 hours.

FUTURE WORKS

Following these preparatory tests, and upon receipt of the

new materials provided by Alcoa, (2090, 2090+In, and 2219

alloys), mechanical tests will be started on charged and un-

charged specimens. These experiments will include Charpy impact,

disk rupture, and stress state tests.

The Charpy impact tests will be performed in order to deter-

mine the effect of temperature on the hydrogen embrittlement for

the uniaxial direction. The stress state tests will be performed

with two holes into the sample, and for various orientations of

the holes to vary fracture mode and to analyze the effect of

hydrostatic stress with or without hydrogen. The disk rupture,

or biaxial, test will simulate the application for high pressure

tanks. The disk rupture test system has been upgraded with a

Linear Variable Displacement Transducer (LVDT) in order to follow

the evolution of the deformation with time and with pressure

applied to the sample.
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Figure la.

Figure lb.
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Figure ic.

Figure I: Roughness Analvsis of 2219 Sample Before Being
Cathodicallv Charged.
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Proqram 7 INVESTIGATION OF THE REACTION KINETICS BETWEEN SIC

FIBERS AND SELECTIVELY ALLOYED TITANIUM MATRIX

COMPOSITES AND DETERMINATION OF THEIR

MECHANICAL PROPERTIES

D.B. Gundel and F.E. Wawner

Object ive

The objective of this study is to investigate fiber-matrix

interactions in selected titanium reinforced composites and to

define reaction kinetics and influence on mechanical properties

of the composites.

Approach

The approach taken in this study is to fabricate titanium

matrix composites using titanium that has been selectively al-

loyed to generate improved high temperature properties, and

silicon carbide fibers as the reinforcement. The matrix alloy of

immediate interest is a near-alpha alloy designated Ti-ll00 which

was recently developed. This alloy is a derivative of Ti-6242-si

and has the composition Ti-6AI-2.8Sn-4Zr-0.4Mo-0.45Si-0.07-

0.02Fe. It offers improved creep, thermal stability and ductili-

ty over Ti-6242-Si. Ti-ll00 will be obtained in the 8 mil sheet

form for composite fabrication.

For comparison of reaction kinetics, samples will also be

produced using the beta alloy Ti-15V-3Cr-3Sn-3AI. Recommenda-

tions will also be sought from LaRC technical personnel (W.

Brewer) as to other matrices of most interest to NASA programs.

Silicon carbide fiber to be used as reinforcement can be

obtained from two potential sources. Textron Specialty Materials

in addition to its standard SCS-6 fiber is presently producing

the fiber on a simplified reactor which should ultimately lead to

a lower cost product than the conventional SCS type fibers. This

fiber is available in 3 mil diameter (SCS-9) or 6 mil diameter

(SCS-10). The fiber is chemically vapor deposited onto a carbon

monofilament substrate (without a pyrolytic graphite layer that

is used with standard SCS- fibers). These fibers have a surface

layer, 3 microns thick, that is similar to the SCS-6 fiber.

Tensile strengths for the fibers have been averaging 400-500 ksi

in their early stage of development.

BP Corporation also produces a silicon carbide fiber desig-

nated Sigma fiber and is marketed by Atlantic Research Corpora-

tion in this country. This fiber is deposited on a tungsten

substrate and does not have a carbon rich surface. Studies

during the NASP program showed that a protective coating was

necessary for the fiber to be effective. This fiber, if avail-
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able, will be used for comparison with the Textron fiber and as a
substrate for coating studies.

Part of this program will include a limited effort on the
application and evaluation of diffusion barrier layers on SiC
fibers for incorporation into Ti alloy composites. Major empha-
sis will be placed on ceramic coatings of borides or nitrides
based on their large negative enthalpy of formation. However,
certain metals or combinations thereof are also of interest.
This project will be exploratory, but will be guided by theoreti-
cal considerations with regard to the selection of the coatings
for minimum reactivity.

Kinetics of the Fiber/Matrix Reaction

The first part of this project is to determine the kinetics

of SCS fiber/Ti matrix interactions at elevated temperatures.

The growth of the reaction zone at the interface between matrix

and fiber has been studied for several of these systems and has

been shown to follow a parabolic growth law [1-4]

z = k(t I/2)

where z is the average reaction zone (RZ) thickness, t is the

exposure time at a given temperature, and k is the temperature

dependent reaction cg_tant. The reaction constant, k, is the
slope of a z versus t _i_ plot at a certain temperature. Further-

more, the reaction can be described by an Arrhenius relation

[1,3,4]:

in(k) = in(ko) - Q/2RT

Here, k o is the pre-exponential term, Q is the activation energy,

R is the gas constant, and T is the absolute temperature. A plot

of in(k) versus I/T using experimentally determined k values

should be linear with a slope of -Q/2R.

Materials Acquired

The titanium alloy foils were obtained from Timet Corpora-

tion of Henderson, NV. The first foil from the supplier was 6

mils thick and was labelled Ti-ll00. However, it was determined

using EDX analysis that the chemistry of the foil was actually

close to that of Ti-15-3. The manufacturer acknowledged that a

mistake could have been made, but could not confirm that the

material is Ti-15-3. The chemistry indicates that it is a beta-

Ti alloy, so several experiments were done using this foil. In

this report, the Ti alloy in this first foil will be referred to

as foil-l. The second shipment contained foils that were i0 mils

thick that were determined by EDX analysis to have chemistry

close to the aim chemistry of Ti-ll00.

The fibers were supplied by Textron Specialty Materials of

Lowell, Mass. Fibers designated SCS-6, SCS-9, and SCS-10 were
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received. The SCS-6 and SCS-10 fibers are 5.6 mils in diameter,

whereas the SCS-9 fiber is 3.1 mils. The thickness of the pro-

tective layer on the SCS-10 and SCS-9 fibers is 3 microns, and 5
microns on the SCS-6.

Fabrication of Composites

Composites for the kinetic study were fabricated by diffu-

sion bonding in a vacuum hot-press. The fabrication parameters

(temperature, pressure, and time) were chosen to minimize the as-

fabricated reaction zone thickness, but still insure complete

consolidation. Layups of the fiber and foil were made by placing

evenly spaced fibers over precleaned, one inch by one inch Ti-

alloy foil and then applying a fugitive organic binder. Three

such layups and a cover foil were then put into the vacuum hot-

press. After a 60 millitorr or better vacuum was drawn, the

temperature was slowly raised to 450°C and held for 2 hours to

eliminate the binder, then raised again to the desired fabrica-

tion temperature. All of the composite samples were made with a

pressure of 15 ksi for 30 minutes. The fabrication temperature

for the composites was 850°C for the foil-i matrix and 950-975°C

for Ti-ll00.

Kinetic Stud_

Each composite specimen prepared as described above was

sectioned into several smaller samples. These smaller samples

were all annealed at the same temperature, but for varying

lengths of time. In order to prevent severe oxidation of the

samples at the exposure temperatures, they were vacuum encapsu-

lated in quartz tubes. The temperatures and times chosen for

the study were 800°C, 900°C, and 1000°C for 5, i0, 25, 50, and

i00 hours.

After the heat treatment, the samples were mounted in a cold

cure resin with the fiber axis perpendicular to the plane of

polish. The polishing was accomplished by using 180 grit SiC

paper, followed by 30 and 6 micron metal-bonded diamond polishing

wheels, and finally 1 micron alumina. To etch the polished

samples, Kroll's etch (3% HF, 3% HN03, 94% H20 ) was swabbed on
the foil-I samples for 20 seconds , and the Ti-ll00 samples for
i0 seconds.

The samples were observed on a JEOL JSM-35 scanning electron

microscope. Micrographs of the reaction zones of at least three

different fibers per annealed sample were taken at a magnifica-

tion suitable to make accurate measurements. Thirty or more

measurements of the reaction zones of each sample were made and

averaged using a LeMont Scientific Image Analysis System.

Results and Discussion

Composites were made consisting of foil-i/SCS-6,

Ti-II00/SCS-6, and Ti-II00/SCS-9 with volume percent fiber of 15,
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i0, and 5, respectively. The low volume fraction of fiber in the
Ti-ll00 matrix results from the fact that the foil was relatively
thick (i0 mils). The as-fabricated reaction zone thicknesses
were 0.42 microns for the Ti-ll00 matrix, and 0.63 for the foil-I
matrix. Figure 1 shows the as-fabricated Ti-II00/SCS-6 compos-
ite.

SEM micrographs of the reaction zones of Ti-II00/SCS-6, Ti-
6AL-4V/SCS-6 [I], and foil-I/SCS-6 composites that were annealed
at 900°C for 25, 20, and 25 hours, respectively, are given in
Figure 2. Note the relative sizes of the reaction zones (Ti-ll00
is the smallest). Note also the uniformity of Ti-ll00 RZ as
compared to the other two. Rhodes and Spurling [5] have at-
tributed the nonuniformity of the RZ in the Ti-6-4 to the fact
that this is an alpha + beta alloy and the reaction progresses
faster in the beta phase than in the alpha phase. According to
them, the reason for this is that carbon (one of the main react-
ing species) has a higher diffusivity and lower solubility in
beta-Ti. This might suggest that, with other effects being equal
(such as the slow down of RZ growth with alloying additions to Ti
as was noted by Martineau et. al. [3]), for a given temperature,
the reaction will progress more rapidly in a Ti alloy that has
more beta phase. This may be an important consideration in
choosing a matrix to limit the rate of reaction in Ti alloy/SiC
composites.

Thus far the kinetic parameters for the two Ti-ll00 systems
indicated above have been determined. RZ thickness versus t I/2
for the SCS-9 fiber is plotted in Figure 3 (the Arrhenius plot is
also given). The data obtained from the SCS-6 composite is
virtually identical to that of the SCS-9 material, therefore this
serves as a plot for Ti-II00/SCS-6 as well. The only real dif-
ference in the data between the two was at 1000°C for i00 hours
where the surface layer on the SCS-9 fiber had been consumed by
the reaction and that of the SCS-6 had not. The RZ thickness for
the SCS-9 fiber was 9.11 microns and 8.35 microns for the SCS-6
fiber. The experimentally determined kinetic parameters for
TilI00/SCS-9,6 are given in Table i. Also given are values
determined by researchers studying the Ti-6-4/SCS-6 system.
Figure 4 is a plot comparing data obtained in this study for the
Ti-II00/SCS-9 to that obtained by Whatley (I) for a single coated
SCS-6 fiber (35 volume %) in a Ti-6-4 matrix. It is evident that
the Ti-ll00 matrix reacts more slowly under these conditions than
does the Ti-6-4.

Some problems were encountered in determining the kinetic
parameters of the foil-i/SCS-6 system. At the 900°C and 1000°C
exposure temperatures, large particles (up to 30 microns) were
present in roughly a circular region around the fibers (see Fig.
5b). This was not seen in the Ti-ll00 matrix composites (Fig.
5c). Backscattered electron imaging, which shows differences in
compositions of areas, indicated that these particles had the
same average atomic weight as the reaction zones. It has been
determined by many workers that TiC is the major reaction product
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in Ti alloy/SCS fiber composites [3-5,7,8]. If these particles

surrounding the fibers are TiC, then they are probably due to the

fact that foil-i is a beta-Ti alloy which allows for faster

carbon diffusion (i.e. extracting carbon from the SOS layer) into

the matrix and, because of the low solubility of carbon in the

beta phase, formation of isolated carbide phases after thermal

exposure. Diffusion of carbon in the matrix has been noticed by

Pailler et. al. in Ti-6-4 composites during long annealing times•

Other evidence that suggests that these particles result from
carbon diffusion from the SCS surface is that the RZ thickness

when the surface layer of the fiber is completely consumed is

about I0 microns for both Ti-ll00 (from extrapolation) and Ti-6-4

[i], and only 6.4 microns for foil-i (i000 °, 25 hr). In other

words, even though the same amount of fiber has been consumed,
the reaction zone at the interface in the foil-i is smaller• If

these particles indeed result from a depletion of carbon in the

surface layer, and subsequent diffusion into the matrix to form

TiC, then the reaction kinetics cannot be determined by simply

measuring the RZ thickness, so other methods must be devised•

At the higher temperatures and longer annealing times, the

Ti-II00/SCS fiber RZ appeared to have a four layer structure (see

Fig. 6). Regions A and B are what remains of the carbon rich

surface coating, C through F are reaction zone layers, and E is a

matrix silicide. EDX analysis of the four reaction layers indi-

cates that C, E, and F are silicon rich zones. Using TEM stud-

ies, Rhodes and Spurling [4] have seen a silicon rich zone adja-

cent to the fiber in as-fabricated Ti-6-4 composites. They also

saw a silicon rich zone adjacent to the matrix, and identified

the region in between these two layers as TiC. Different re-
searchers have seen Si-rich zones next to the matrix in other

systems [3-8].

Future Work

. TEM studies of as-fabricated and heat treated samples of Ti-

ll00 composites to determine the nature of the reaction.

2. Continue comparisons of Ti-ll00 kinetics to other matrices•

• Evaluate the mechanical properties of annealed Ti-ll00

samples and determine the effect of the reaction zone on

them.
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° C

8OO
85O

900
950

I000

1050

k

TilI00/SCS-6,9

0.Ii

0.50

1.43

k (106 cm/sl/2 )

Ti6-4/SCS-6
(i)

0.16

0.95

0.84

2.0

3.1

Ti6-4/SCS-6

(4)

0.8

1.8

4.4

o

(cm/s 1/2)

Q

(kcal/mol)

1.21

68.8

4.6

71.4

0.06

49.6

Table 1 - Kinetic Parameters for some Ti/SiC fiber systems
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Figure i- As_fabricated Ti-II00/SCS-6
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a) Ti-ll00 - 900Oc, 25 hours b)
Foil-I - 900°C, 25 hours

c) Ti-6-4 - 900°C, 20 hours

(from Whatley (I))

Figure 2- Reaction zones of annealed SCS-6 composites
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a) Foil-l, 900°C, i0 hours

b) Foil-l, 1000°C, 50 hours
c) Ti-ll00, 10000C, 50 hours

Figure 5 - Annealed SCS-6 composite samples
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Figure 6- Ti-II00/SCS-6 interface after i00 hours at 1000°C
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Proqram 8 THE EFFECT OF NON-RANDOM PARTICLE DISTRIBUTION ON

THE MECHANICAL BEHAVIOR OF STRUCTURAL MATERIALS

Joseph B. Parse and John A. Weft

Project Objective

The objective of this project is to develop methods for

quantitative analysis of the spatial distribution of second

phases in structural materials. Coupling of these methods with
models for deformation and fracture will reveal the effects of

non-random phase distribution on material performance.

Nearly all structural materials contain more than one phase.

Often, the second-phase particles (or fibers) are dispersed in a

nonrandom fashion; they may be either regularly-spaced or clus-

tered into clumps or bands. Examples of advanced aerospace

materials which contain nonrandom phase dispersions include

alloys fabricated by powder metallurgy methods, composite materi-

als and superalloys. The effects of clustering or regular spac-

ing of second phase particles on deformation and fracture of the

materials are poorly understood. The problem of analyzing and

understanding the effects of nonrandom particle dispersions on

macroscopic material properties can be divided into two parts: i)

characterizing the spatial distribution of the second phase

particles, and ii) assessing the effect of non-random particle

dispersions on deformation and fracture behavior.

The solution to the overall problem will necessarily be an

interdisciplinary effort involving both material and mechanical

sciences. The initial UVa effort is focusing on development of

methods for characterizing the spatial distribution of second

phases in structural materials since this part of the overall

problem is least well-developed.

Proqress During the Current Reportinq Period

We seek to establish a method for analyzing the spatial

distribution of particles in materials that will tell us whether

particles are clustered, randomly distributed or anticlustered

(regularly-spaced); and whether the particle dispersion is direc-

tional (banding). The analysis should yield parameters which

characterize the degree and scale of clustering and, if the

particle dispersion is banded, the direction of banding. For the

purpose of this analysis, the problem is simplified by reducing

each particle to a point located at the particle's center of
mass.

For a two-dimensional particle dispersion, the Voronoi

polygon corresponding to a particular particle is the smallest

convex polygon that can be formed by the perpendicular bisectors

of lines joining the chosen particle with all other particles in

8O



the dispersion [1-3]. The adjacent particles which define the
Voronoi polygon for a particular particle are near-neighbor
particles. Once the Voronoi polygon has been determined for each
particle, the polygons can be assembled into an area-filling
tessellation: the Dirichlet or Primary tessellation [4,5]. A
second tessellation - the set of Deaunay triangles - may be
constructed using the lines joining near neighbor pairs; this
procedure yields the Dual tessellation.

Our broad approach to the problem of characterizing the
spatial distribution of second phases in structural materials
involves the following steps.

Use computer digitizing methods to describe the particle
dispersion as a two-dimensional array of points.

Construct the Voronoi polygon for each particle in the two-
dimensional particle dispersion.

Construct the Primary and Dual tessellations from the poly-
gons.

Establish statistical methods to deduce the particle distri-
bution characteristics (degree and scale of clustering,
banding) from distributions of the Voronoi polygon, Primary
tessellation and Dual tessellation properties.

Couple the statistical analysis methods for particle disper-
sions to micromechanical models for deformation and fracture
of materials.

The long term result of this research project will enable the

effects of nonrandom particle dispersions on bulk mechanical

properties to be understood and predicted.

During the first 6 month reporting period of this project,

computer software has been developed to carry out the first three

steps listed above. The initial particle dispersions can be

either real dispersions obtained by digitizing micrographs or

computer-generated dispersions which have known types of cluster-

ing or banding. The particle positions are then used to con-

struct the Voronoi polygon for each particle, and the Primary and

Dual tessellations for the particle dispersion. The software

which constructs the Voronoi polygons and the Primary and Dual

tessellations can accept dispersions containing up to I000 parti-

cles. Particle dispersions obtained by digitizing real micro-

graphs usually do not contain more than a few hundred particles

so the software developed thus far is directly applicable to

analyzing real cases.

In addition to developing software for generating the Voro-

noi polygons and the Primary and Dual tessellations for particle

dispersions, we are in the process of developing additional

software that will enable us to apply statistical analysis meth-
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ods to these geometrical constructs. This has already been
accomplished for the Voronoi polygon case and current efforts are
focusing on the Dual tessellation case.

Typical results for several computer-generated particle
dispersions are shown in Figures 1 through 3. Part a) of each
figure displays the particle dispersion with the primary tessel-
lation superposed. The severity of clustering of the particles
increases from Figure 1 to Figure 3. Part b) of each figure is a
graph showing the cumulative distribution of Voronoi polygon
areas. The distribution of Voronoi polygons area is seen to
depend markedly on the severity of clustering. In addition to
the distribution of polygon areas, a variety of other properties
have been examined. These include equivalent circle diameter,
length of the longest chord, orientation of the longest chord,
deviation of the particle from the polygon center of mass, nor-
malized perimeter length, and others.

Future Plans

During the next reporting period, attention will be focused

on three areas of the overall problem:

i. Application of statistical analysis methods to the Voronoi

polygon property distributions. The objective of this effort is

to develop methods to extract parameters which characterize the

original particle dispersion from these Voronoi property distri-

butions. The starting point for this analysis is apparent from

the graphs of Voronoi polygon area shown in Figures 1 - 3. It is

clear that severe clustering causes the cumulative distribution

to separate into two overlapping distributions, one associated

with intra-cluster polygons and the other associated with inter-

cluster polygons. Statistical analysis methods which can dec.n-

volute the superposed distributions should enable us to separate

the 2 classes of Voronoi polygons for analysis.

2. Development of similar methods for analyzing the Dual tessel-

lation, which includes additional information not available from

the individual Voronoi polygons.

3. Application of the analysis methods to real materials. At

present, analyses are planned for several types of composite

materials, including cast AI-SiC particulate composites and

extruded Zn-AI-SiC composite materials. These materials were

selected for initial analysis because samples are available for

which we know the processing histories and one of the long term

goals of the project is to correlate the particle dispersion

characteristics with processing conditions.
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I. ABSTRACT: CONCLUSIONS OF THE REVIEW

The objective of this paper is to critically compile and assess

experimental results and mechanistic models for corrosion fatigue

crack propagation in structural alloys exposed to ambient

temperature gases and electrolytes. Only crack propagation is

considered. Data and models are based on continuum fracture

mechanics descriptions of crack tip stress and strain fields,

coupled with continuum modeling of occluded crack mass transport and

chemical reactions. The aim is to develop the state-of-the-art so

as to inform the person seeking to broadly understand environmental

effects on fatigue, to provide an ample experimental basis for

evaluations of mechanistic models relevant to specialists, and to

define worthwhile directions for future corrosion fatigue

characterizations and mechanistic research.

Section II provides an introduction to corrosion fatigue. The

state-of-the-art which emanated from the Storrs and Firminy

conferences is summarized. Qualitative mechanisms for corrosion

fatigue are presented.



Section III assesses the fracture mechanics approach to

corrosion fatigue, while Section IV considers experimental methods.

The following two conclusions are established:

i. Fracture mechanics descriptions of corrosion fatigue crack

propagation; viz, growth rate as a function of stress
intensity factor; provide an established and physically

meaningful basis which couples alloy performance, damage

mechanisms and life prediction studies through the concept

of growth rate similitude. Extensive data bases have been
developed for structural alloys over the past three

decades. (See Section III.)

2. Experimental methods are developed for determinations of

average crack growth rate as a function of continuum

fracture mechanics crack tip parameters, particularly DK.

Non-steady state crack growth, unique to corrosion

fatigue, and crack closure are not sufficiently

considered. Future procedures will incorporate precision

crack length measurement and computer control of stress

intensity to develop quantitative and novel corrosion

fatigue crack growth rate data, particularly near
threshold. Advances have been recorded in measurements of

small crack growth kinetics, however, such approaches are

not easily adapted to controlled environments. The

fundamental problem is the lack of methods to directly

probe the mechanical and chemical damage processes local

to the corrosion fatigue crack tip. (See Section IV.)

Section V provides examples of important variables which affect

corrosion fatigue crack growth rate behavior. It is concluded that:

3. A plethora of interactive variables influences the
corrosion fatigue crack growth rate-stress intensity

relationship. The effects of chemical, metallurgical and

mechanical variables are well characterized and reasonably

explained by qualitative arguments. Time, or loading

frequency, is critical; complicating long-life component

performance predictions based on shorter term laboratory

data. Corrosion fatigue crack growth rates are affected

by environment chemistry variables (viz: temperature; gas

pressure and impurity content; electrolyte pH, potential,

conductivity, and halogen or sulfide ion content); by

mechanical variables such as DK, mean stress, waveform and

overloads; and by metallurgical variables including

impurity composition, microstructure and cyclic
deformation mode. Limited studies show that yield

strength is not a critical variable in cycle-time
dependent corrosion fatigue. Fractographic analyses of

microscopic crack paths provide a basis for failure

analyses and input to mechanistic studies. (See Section

V.)



deformation is time or environment sensitive. These
limitations do not preclude the only quantitative approach
developed to date to characterize subcritical crack
propagation. Rather, they indicate the need for crack tip
microchemical-mechanical modeling. (See Section VII.)

Section Vlll provides necessary directions for future research

in corrosion fatigue.

6. Opportunities exist for research on corrosion fatigue to:
(a) broaden phenomenological understanding, particularly

near threshold, (b) develop integrated and quantitative

microchemical-mechanics models, (c) develop experimental

methods to probe crack tip damage, and to measure near

threshold time-cycle dependent crack growth, (d)
characterize the behavior of advanced monolithic and

composite alloys, and (e) develop damage tolerant life

prediction methods and in situ sensors for environment
chemistry and crack growth. (See Section VIII.)

A Table of Contents is provided in Appendix i.
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FATIGUE CRACK PROPAGATION IN ALUMINL_-LITHIUM ALLOYS

K.T. Venkateswara Rao*, ILS. Piascik +, R.P. Ganglofl "+ and ILO. Ritchie*

The oft-quoted outstanding fatigue crack propagation
resistance of aluminum-lithium alloys is controlled by
extrinsic mechanical crack tip shielding processes, and by
chemical environment effects. Prominent microstructural

influences are interpreted within these frameworks.
Extensive data describe the growth kinetics of fatigue
cracks in ingot metallurgy AI-Li alloys 2090, 2091, 8090,
8091 and in powder metallurgy alloys exposed to moist
air. Crack growth is dominated by shielding from
tortuous crack paths and resultant asperity wedging.
Beneficial shielding is minimized for small cracks, for
high stress ratios and for certain loading spectra. While
water vapor and aqueous chloride environments enhance
crack propagation, A1-Li-Cu alloys behave similarly to

2000 series aluminum alloys, being more resistant to
corrosion fatigue than 7000 alloys. Loading frequency,
aK, water vapor pressure and electrode potential are the
critical variables. Cracking in water vapor is controlled
by hydrogen embrittlement, with little influence of
surface films on cyclic plasticity; mechanisms for
corrosion fatigue in aqueous environments are tmdear.

INTRODUCTION

The durability and defect/damage tolerance characteristics of advanced
materials are of considerable importance in the design of reliable safety-
critical structures. These aspects are particularly relevant for the successful
application of low density aluminum-lithium alloys, as they are targeted for
high. performance aerospace apptications, replacing traditional 2000 and 7000
series aluminum alloys.

Studies to date indicate that the fatigue crack growth resistance of AI-Li
alloys is superior to conventional aluminum alloys. This behavior is

*Center for Advanced Materials, Lawrence Berkeley Laboratory, and

rnia at Berkeley, Berkeley, CA, 94720, USA.

+Department of Materials Science, University of Virginia, Charlottesville,
VA, 22901, USA.
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Both extrinsic shielding and intrinsic crack tip damage processes are
environment sensitive. For the former, corrosion products affect closure,
however, environmental influences on surface roughness and crack wake
lasticityare alsoposs_le [15].Investigauonsof these processesarelimited
r aluminum alloys.An exceptionismoist airoxide induced crack closure

which has a secondaryinfluenceon near-thresholdcrackpropagationinA1
alloys,in contrastto behaviorinsteel[624,25].Additionalwork isrequired
to explore the environmental mechanisms of crack tip shielding.

Hydrogen embrittlement and film rupture/anodic dissolution/
repassivation have been proposed as mechanisms of intrinsic crack tip
damage for environmental fatigue of aluminum alloys. Studies of these
mechanisms are hindered because of the inaccessibility of the crack tip to
direct measurements, and because crack growth rate data are often obtained
for closure dominant conditions which incorporate extrinsic and intrinsic

damage. This latter problem has hindered acquisidon and interpretation of
meamngful corrosion fatigue crack propaganon data for advanced A1-Li
alloys. Recent successes in this regard are highlighted below.

Corrosion Fati_e Crack Proportion: AI-Li Alloys in Water Vapor

Water vapor enhances the ratesof fatigue crack propagation in AI-Lialloys;
the mechanism is likely hydrogen embrittlement. In these regards the crack
growth behavior of AI-Li alloys is analogous to that of conventional 2000 and
7000 series AI alloys, as established by Wei and coworkers [22,2.6].

Typical data are presented in Fig. 7 for alloy 2090 [10,11]. Extrinsic and
transient crack growth effects were minimi_ed by experimental design; each
data point represents about 0.3 mm of crack extension at constant _K. High

_K data were obtained with short edge crack lengths (< 0.8 ram) at low R,
while near-threshold data were obtained with longer cracks and R > 0.85.

Intermediate growth rates were obtained at constant Kma x with R values
between these limits. Crack growth in moist air is represented by the solid
line, consistent with Fig. 3. Growth rates in pure water vapor are similar to
those for moist air and are enhanced relative to fatigue in purified helium,
oxygen and dynamic vacuum. The environmentaleffectismaximum nearthe
thresholdand diminishesto nearlyzero at the highestaK levelsexamined.
The near-thresholdregime has been largelyunexplored,particularlyvoid of
closure effects.

Several mechanistic inferences are drawn from the data in Fig. 7. Crack
rowth is accelerated by hydrogen produced by the oxidation reaction
etween clean AI-IA at the crack tip and water vapor. Based on the equality.

of rates for oxygen and the inert environments, crack surface films do not
affect crack growth by influencing the morphology and reversibility of plastic
deformation. Speculatively, oxide formedin water vapor behaves similarly to
that produced in dry oxygen. Similar crack growth rates in inert gas, vacuum
and oxygen environmer:ts were reported for 2024 and 7075 alloys; at least at
8rowth rates above 10-° ram/cycle [26,27]. Secondly, the region of nearly K-
re.de.pendent crack growth in moist air and water vapor is environmental in
origin. This behavior correlates with the aK level where the cyclic plastic
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AI-Li alloys which promote crack deflection display lower crack growth
rates when compared based on total applied stress intensity. For example, of
me various peak-aged alloys, fine grained 8091 shows the most linear crack
paths; crack growth rates are faster than the other alloys. Conversely in 2090,
crack paths are highly deflected and branched; correspondingly this allov
exhibits the best "long crack" propagation resistance (Fig. I).

The princ/pal effect of deflected and tortuous crack paths in AI-U alloys is
o _duc.e high crack closure levels. Slip band cracking along planes par'allel
o/ltl_ is me aominant failure path for fatigue in moist air, at least within

the Paris regime. (Additional cracking morphologies are possible, as
discussed in an ensuing section.) As shown in F_g. 2a" marked slip planaritv
results in faceted crack growth along intersecting slip bands and promote_
periodic deflection in the direction of crack growth. In addition the
pronounced deformation texture in wrought A1-Li promotes faceted crack
path tonuosity through the plate/specimen thickness (Fig. 2b). Planar slip
reduced meandering and deformation texture induced tortuosity lead to
significantly slower _[rowth rates by: i) increasing crack path length, ii)
deflecting the crack n'om the plane of maximum tensiI¢ stress, and most
importantly iii) developing high roughness-induced crack closure levels via

the wedging of large fracture surface asperities within the crack (Fig. 2a).

Shielding mechanisms are common in coherent particle hardened
aluminum alloys; however; their influence is generally limited to near-
threshold aK levels, where the cyclic plastic zone size is comparable to the
_aa/n or subgrain size. AI-Li alloys are remarkable in that the faceted

cture mode, and hence high closure levels, persist t__ higher aK levels,
accounting for improved crack growth properties up to 10 m/cycle.

Lon_-Craek Behavior:. Hi_,h. Pro=_rammed Stress Rati0_

Fatigue crack propagation at high stress ratios provides a reasonable
approach to examine microstructural and environmental effects on intrinsic

rasaCk' propagation. In this regard, programmed load-shedding procedures
ea on decreasing _ at constant Kmax, therefore increasing R, provide

meaningful results [13]. Typical data are presented in Fig. 3 for AI-Li alloys.

In the absence of significant closure, likely at stress ratios above about 0.8,
A1-LI-Cu alloys exhibit equivalent growth rates compared to other 2000 series
alloys. Faster growth rates are observed for 7000 series alloys, perhaps due to
the enhanced environmental sensitivity of these materials. When compared
to low R growth rate data, based on applied aK, results of high mean stress

x'periments show greatly reduced values of aKth and reduced variability for
ttterent microstructures (Fig. I compared to Fig. 4).

Comparison of programmed high R data with crack growth rates plotted in
terms ot effective stress intensity range (aKef f = Kma x - Kcl ) in&cares the
propriety of the former for measurements oFintrinslc cracl_ing. A typical
result for 2090 (LT) is plotted in Fig. 3. For this alloy, the two methods
provide upper and lower bounds for the intrinsic threshold. High stress ratio
data are realistic, provided that the shielding closure is minimal; a fact
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zone diameter is less than the subgrain size of about 10 _m. Coupled with
fractographic findings, this result suggests that hydrogen transport within the
plastic zone determines the shape of the intrinsic da/dN (aK) relationship.

The ratio of water vapor partial pressure to loading frequency is the
primary variable which control[ corrosion fatigue crack propagation "in AI-Li
alloys [10,11]. For fixed frequency (5 Hz), constant environmental growth
rates are observed for water vapor pressures above 0.5 Pa; da/dN decreases
wi_ decreasing pressure below tMs saturation level and reaches the inert
envlronment rates shown in Fig. 7. This result has two implications. The
"saturation" water vapor pressure is extremely low, particularly for near-

threshold cracking. Ultra-high vacuum (better than 1 sPa with m_nimai wall
outgassing and leakage), or very high loading frequendes (above ._0 Hz), are
required to obtain truly "inert environment" fatigue data. Experiments with
AI-Li alloys in moderate vacuum systems will yield crack growth data which
are equivalent to values for water vapor or moist air. Secondly, the behavior
of AI-Li alloys is well described by a fast surface reaction/gas phase mass
transport limited crack growth model developed by Wei and coworkers for
2000 and 7000 series alloys [26]. The saturation pressure is possibly lower
than that predicted by the transport model, and indicative of locked slip
deformation or discontinuous crack propagation. This calculation is clouded
by uncertainties in the geometric parameters which describe impeded
molecular (Knudsen) flow, particularly at high R.

Corrosion Fatigue Crack ProeaL, ation: AI-Li-Cu in Aqueous ChloridP

Aqueous chloride solutions enhance rates of fatigue crack propagation in AI-
Li alloys; the dama]ge mechanism is unclear, although both hydrogen
embrittlement and dlssolution/film rupture are possible. Typical data are
presented in Fig. 8 for peak-aged alloy 2090 [10,12]. Extrinsic and transient
.crack growth effects were mlnirni_ed, as discussed for Fig. 7. Compared to
men helium, the NaCI environment enhances rates of crack propagation for
both anodic and cathodic polarizations. Crack growth rates are particu/arly
increased near-threshold. These data are comparable to recent results of
Yoder and coworkers on alloy 2090 [28], which were; however; limited to
relatively high level[ of K and low R with a substantial closure influence.

For corrosion fatigue, crack geometry dependent occluded cell mass
transport and time dependent chemical reactions can cause nonsteadv-state
crack growth which is poorly described by applied aK [15,22,23]. "Crack
growth rate laws are not unique; for example, short cracks can grow at
remarkably fast rates compared to long cracks and due to chemical
mechanisms [29]. This issue, an extrinsic effect of sons, has not been
explored for environmental cracking of aluminum alloys. Results for alloy
2090 in Fig. 8 provide some insight in this regard. The corrosion fatigue
behavior of short cracks sized between 0.2 and 2 nun is identical to that of

long cracks for NaCI. No evidence is available to suggest that short corrosion
fatigue cracks grow at unpredictably rapid rates.

Two variables strongly influence corrosion fatigue crack propagation in
aluminum alloys exposed to aqueous chloride: cyclic loading frequency and
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moist air,pure water vapor and a.queousNaCI), crackingproceeds along
severalmicroscopic paths [10]. Shp band cracking occurs at high stress
intensitiesand forchem/cnl conditionswhere environmental cracking is
reduced. In thisAK regime,intersubboundar_crackingisobservedforwater
vapor and NaCl; theproportionof thismode increasesand slipband cracking
decreasesas stressintensityisreduced. Cleavage isthe dominant fracture
mode in hydrogen producing environments near-threshold. Notably,

subboundarycracking transiuonsto cleavage with decreasing AK in the
vicinityofthe plateau"intheda/dN (AK) relationship,Figs.7 and& Etch pit
stud/esestab_h thatcleavageoccursalong either{100} or {110} planes;the
exact facet orientation is notyet defined. The occurrence of cleavage is
consistent with the behavior of 7000 series alloys [26,31].

Future Research

Corrosion fatigue crack growth rates and tractographic measurements are
limited to peak-aged alloy 2090; work is required to determine the behavior
of AI-I..i-Cu alloys which contain substantial amounts of magnesium. Grain
size, strengthening predpitate/dispersoid and cyclic deformation mode effects
on intrinsic corrosion fatigue crack growth must be characterized and
modeled. Environmental effects near-threshold are particularly important in
these regards. In addition to intrinsic damage mechanisms, environmental
effects on crack tip shielding must be explored.

For fatigue in water vapor, the mass transport and reaction model must be
further developed and tested, partictflarly for .the threshold regime. The
effect of surface oxide films on crack tip plasudty must be more broadly
characterized. The mechanism by which hydrogen promotes the various
bdtde crack paths must be determined.

For crack growth in aqueous electrolytes, crack chemistries must be
modeled and measured for reasonable corrosion fatigue conditions. Coupled
micromechanical-crack chemistry models will identify the contributions of
_odic dissolution, hydrogen uptake and film rupture, and explain the effects
of variables such as frequency and electrode potential

Comparisons with Conventional[ Aluminum Alloys

The environmental cracking resistance of A1-Li alloys is often intuitively
judged to be low due to the "reactivity" of lithium and to the well known
sensitivity of these alloys for intergranular stress corrosion cracking. This
assessment is false.

From an applications perspective, the corrosion fatigue resistance of
commercial aluminum-lithium alloys is good, comparable to the behavior of
2000 series alloys and improved compared to 7000 series A1 alloys which are
of known sensitivity to hydrogen embrittlement. Specific data are presented
in Fig. 9 [21]. Behavior in the low R, high _4 regime demonstrates similar
cracking in A1-Li-Cu alloy 2090 and conventional alloys 2024 and 2518
exposed to NaC1 at typicalfree corrosion potentials for aerated solutions.
The environmental effect is small compared to helium or vacuum and is
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Fig. I: a) Constant amplitude
fatigue crack propagation rates
and b) correspondingcrackclosure
levelsforlong cracksinpeak-aged
AI-Lialloys2090,2091,8090,8091,
and conventional aerospace
aluminum alloys 2124-T351 and
7150-T651 (LT orientation, R =
0.1). Note the superiority of
lithium containing alloys,
consistent with high closure levels

[9].

&

Fig. 2: Crystallographic crack path
tortuosity observed during faugue
crack growth in A1-Li alloys,
induced by a) planar slip in the
direction of crack growth (arrow),
and b) pronounced texture through
thepl_/tethickness.As shown in
(a),deflectedcrackpathspromote

premature crack surfacecontact,
v_z. roughness-induced crack
closure. 2090-TSE41 alloy plate
tested in the LT orientation,

R=o.:[9].
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AGE HARDENING CHARACTERISTICS AND

MECHANICAL BEHAVIOR OF A1-Cu-Li-Zr-In ALLOYS

John A. Wagner
NASA Langley Research Center, Metallic Materials Branch

Hampton, VA
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Abstract

An investigation was conducted to determine the age hardening response and cryogenic
mechanical properties of superplastic AI-Cu-Li-Zr-In alloys. Two alloys with compositions
AI-2.65Cu-2.17Li-0.13Zr (baseline) and A1-2.60Cu-2.34Li-0.16Zr-0.17In were scaled-up
from 30 lb. permanent mold ingots to 350 lb. DC (direct chill) ingots and thermomechanically
processed to 3.2 mm thick sheet. The microstructure of material which contained the indium
addition was partially recrystallized compared to the baseline suggesting that indium may
influence recrystallization behavior. The indium-modified alloy exhibited superior hardness
and strength compared to the baseline alloy when solution heat treated at 555°C and aged at
160°C or 190°C. For each alloy, strength increased and toughness was unchanged or

decreased when tested at -185°C compared to ambient temperature. By using optimized heat
treatments, the indium-modified alloy exhibited strength levels approaching those of the
baseline alloy without deformation prior to aging. The increase in strength of these alloys in
the T6 condition make them particularly attractive for superplastic fomaing applications where

post-SPF parts can not be cold deformed to increase strength. _]
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Cryogenic fuel tanks are responsible for a large portion of the structural weight of current
and proposed launch vehicles. Currently, conventional 2219 aluminum alloy is used to
fabricate the Space Shuttle external tanks. The integrally stiffened tanks are machined from
38.1 mm thick plate, with approximately 75% of the starting plate removed as scrap.
Therefore, it is possible that a significant improvement in material buy-to-fly ratio can be made
by using advanced processing techniques and advanced alloy systems to manufacture
cryogenic tanks for future launch vehicles. Specifically, it is envisioned that by using AI-Li
alloys and superplastic forming (SPF) techniques, a significant cost and weight savings could
be realized in the fabrication of expendable cryotanks.

Expendable tanks will be used to contain liquid hydrogen (-253°C) and liquid oxygen
(-173°C) propellants. Therefore, alloys used in the fabrication of these tanks must exhibit
high strength, toughness and stiffness at cryogenic operating temperatures. Recent work on
AI-Cu-Li-Zr alloys has shown that this alloy family exhibits dramatically improved strength-
toughness combinations at low temperatures (1) compared to conventional aluminum alloys,
making them appealing candidate materials for cryogenic tank applications.

One alloy being investigated in the current study is of a 2090-type composition with a
minor alloy addition of indium. AI-Li alloys have lower density, higher modulus and good
cryogenic properties compared to conventional aerospace aluminum alloys, making them
attractive for cryogenic tank application. Because the 2090+In alloy can be superplastically
formed (2), major machining requirements and scrap handling cart be reduced, and the poor
mechanical properties associated with thick plate AI-Li alloys can be avoided. Furthermore,
increased formability associated with SPF will provide additional weight savings by
permitting the forming of complex stiffener configurations with increased structural
efficiencies. It has also been observed that 2090+In exhibits strength levels approaching
those of the base alloy in the T8 condition without the need for deformation prior to aging (3).
This makes 2090+In particularly attractive for superplastic forming where post-SPF parts can
not be deformed to increase strength levels.

The objectives of this investigation were to demonstrate that the beneficial effect of minor
alloy additions of indium on the hardness and strength of 2090 based alloys could be scaled-
up from a 30 lb. laboratory permanent mold casting to a 350 lb. DC (direct chill) casting, and
to investigate ambient flow and fraemm properties of the scaled-up indium-modified alloy.
Finally, the cryogenic behavior of Al-Cu-Li-Zr-In sheet alloys was evaluated and compared to
those of 2219 aluminum alloy, the current cryogenic tank material.

Experimental Materials and Test Methods

The A1-Li base alloy used in this investigation had a composition similar to alloy 2090 (4)
as shown in Table I. The second alloy contained indium added to the base 2090 composition.
Iron and silicon levels were minimized to reduce cavitation at constituent particles during SPF.
Both the baseline and the indium bearing materials were produced from 350 lb. DC cast pilot
ingots. Also shown in Table I are the various product forms and process histories of the
alloys evaluated in this investigation. The material was hot rolled at 468°C to a thickness of
15.9 mm and thermomechanically treated according to a thermomechanical schedule used to
process material for subsequent SPF (TMT C, ref.2). This schedule consists of a homo-
genization treatment at 538°C, cold water quench, and overage at 413°C for 16 hours. In the
overaged condition, the material was preheated to 288°C and rolled to 3.2 mm with 288°C
reheats.



TableI. ChemicalCompositionsandProcessHistoriesof AI-Cu-Li-Zr andAI-Cu-Li-Zr-In
Alloys

Alloy 2090: AI-2.65Cu-2.17Li-0.13Zr-0.06Fe-0.05Si (wt%)

2090+1n: AI-2.60Cu-2.34Li-0.16Zr-0.05Fe-0.04Si-0.17In (wt%)

Material available:

1. 2090 Base chemistry
- 3.2mm sheet

- 3.2mm sheet

SHT 3% stretch

TMT C

2. 2090 + In

- 3.2mm sheet TMT C

Differential scanning calorimetric (DSC) studies were conducted to identify the appropriate
solution heat treatment. A typical DSC scan is presented in Fig. 1 and shows that there is a
fairly narrow window between the dissolution of T2 and where incipient melting occurs.
After processing according to TMT C, a solution heat treatment temperature of 555°C and
aging temperatures of 160°C or 190°C were used in this study.

4

i !i/
i I I ' I I I 5 51 J

500 510 520 530 540 550 560 570 580

Temperature. *C

Figure 1 - Differential Scanning Calorimetric Scan of 2090 + In alloy.

Aging behavior of sheet material was characterized by hardness tests conducted at 23°C.
Mechanical properties were evaluated using uniaxial tensile and notched Kahn Tear tests at
room temperature and -185°C. Specimens were solution heat treated at 555°C and aged at
160°C for times of 20, 75 and 120 hours. The lower of the two aging temperatures was used
to avoid the copious grain boundary precipitation that occurs at higher aging temperature and
leads to deleterious effects on the fracture behavior of A1-Li alloys (5). Tensile specimens,
3.2 mm square in cross section, were machined from both AI-Li alloys and 2219-T87 in the



longitudinaldirection.Datafrom back-to-backstraingagesandextensometerswereusedto
determinemodulusandelongation,respectively.The KahnTear testwasusedto obtain a
relativetoughnessrankingof thesealloys. Specimens,3.2mm thick, weremachinedin the
LT orientationwith a notchroot radiusof 0.013mm, Fig. 2. Testswereconductedon a
servohydralictestmachineoperatedin strokecontrolatanactuatorspeedof 1.27ram/minute
with load, actuatordisplacementandtemperaturecontinuouslymonitored. Tearstrength
(TS),unit initiation energy(UIE) andunit propagationenergy(UPE)werecalculatedusing
the methodsoutlined by Kaufmanet al. (6-8). The expressionsusedto evaluatethese
quantitiesareshownbelowandillustratedin Fig.2:

TearStrength,TS=P/A+MC/I=P/bt+3P/bt--4P/bt

Unit Initiation Energy, UIE=initiation energy/bt

Unit Propagation Energy, UPE=propagation energy/bt

where: P=maximum load
A--net section area

M=bending moment
C=distance from centroid to extreme fibers
I--moment of inertia

b=total ligament length from notch tip
t=thickness

Load

_- Notch tip radius = 0.013

Initiation /- P max load k23t-]_ I

energy--_ j • i I ,

All dimensions in mm.

Displacement

Figure 2 - Kahn Tear specimen and typical load-displacement record.



Results and Discussion
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Optical' microscopy revealed that there was a significant difference in recrystallization

behavior due to the combined effect of the addition of indium and the processing schedule,
TMT C. Photomicrographs of two sheet alloys are shown in Fig. 3. The A1-Cu-Li-Zr (2090)
and the A1-Cu-Li-Zr-In (2090+In) in the T6 (unstretched) condition were processed according
to TMT C, solution heat treated, and aged at 160°C for 75 hrs. The baseline 2090-T6
microstructure was characterized by fine subgrains typical of a recovered structure. The
2090+In alloy exhibited a partially recrystaUized structure resulting from growth of selective
subgrains within several adjacent prior high angle grains. The baseline 2090 alloy in the T8
(stretched) condition had an optical microstructure very similar to the baseline 2090-T6, but
with a corresponding higher number density of precipitate phases (9).

S

L T 100#m

2090 2090 + In

Figure 3 - Microstructure of A1-Li alloys which have been processed according to TMT C,
solution heat treated and aged at 160"C for 75 hours.

Since 2090-T6 and 2090+In-T6 were processed using the same thermomechanical
treatment, it appears that the addition of indium to the baseline composition is influencing the
recrystallization behavior of that alloy. Further studies will be necessary in order to determine
which variable(s) (the indium addition and/or the thermomechanical treatment variation) is
affecting the recrystallization behavior of this alloy family.

Agiag.Kiam 

The isothermal aging responses of alloys which have been sol[ution heat treated at a.
temperature of 555°C and aged at 160°C and 190°C are summarized in Figs. 4 and 5.

The age hardening response of an alloy which was prepared with an addition of indium is

presented in Fig. 4. Also plotted is the behavior of 3.2 mm baseline material in the T6
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(unstretched) and T8 (stretched) conditions. In the T6 condition, the 2090+In alloy obtained a
higher hardness for a given aging time compared to the baseline 2090 alloy. Furthermore, the
addition of indium promoted high hardness levels, similar to the effect of stretch deformation
in the T8 condition. The higher hardness associated with the indium-modified alloy is most

90-

8O

Hardness,
R B 70

6O

50
0

r" I--[=F. 2090, T6
I

I--i_ 2090, T8

I I I I '1 I

20 40 60 80 100 120

Aging time, hrs

Figure 4 - Hardness, RB, as a function of aging time for 2090 and 2090 + In processed
according to TMT C, solution heat treated at 555°C and aged at 160°C.

apparent at longer aging times. The hardening response of the same group of alloys, but aged
at 190°C, is shown in Fig. 5, where the beneficial effect of the indium addition is again
apparent. In addition, the aging kinetics of the T8 alloy were more rapid than the T6 alloys
when age hardened at 190°C.

Hardness,
R B

80

70 __

In, T6

2ogo,r660
I. IJ/

sop ; i
0 10 20 30 4O

Aging time, hrs

Figure 5 - Hardness, RB, as a function of aging time for 2090 and 2090 +In aged at 190°C.

The change in the aging response of the indium bearing alloy supports the conclusions of
Blackburn et al. (9). This previous study used material which was processed from laboratory
(30 lb.) permanent mold castings. The change in the aging behavior of 2090+In was

attributed to an increased number density and homogeneity of T1 and them-prime phases: In
the present study, indium also had a significant effect on aging behavior, increasing the
hardness of the T6 alloy to a level approaching that of the baseline T8 without the need for
deformation prior to aging. However, mechanisms to explain these results are complicated by
differences in the microstructure of the two alloys. The 2090+In alloy had a more
recrystaUized structure compared to the baseline.



Mechanical Behavior

1. Tensile Properties

Results of uniaxial tensile tests conducted at room and cryogenic temperatures are
summarized in Table II. Each value represents the average of two tests except where noted.

Table II. Tensile Results of AI-Li and 2219 Alloys

Alloy Aging Time Temp. ¥S
hrs. C MPa

2090+in-T6

2090-T6

2O

75

120

2O

75

120

23
-185

23
- 185

23

-185

23
-185

23

-185

23
-185

2090-T8 20 23

-185

2219-T87 23
-185

321
358

370
440

388

434

328

357

365

381

390
382"

412

467

381

450

UTS
MPe

425

533

496
561

5O6
584

.429

528

456
536

471
512"

470
577

474
577

Modulus Elongation
GPa %

78.6 5.9
79.3 13.2"

79.3 7.1

89.6 12.5 °

79.3 10.4

83.4 10.4"

77.9 7.6
81.4 15.0"

80.0 4.8 °
81.4 10.5"

78.6 3.4"
80.7"

78.6 4.3"
80.7 12.1 "

71,7 108

73.1 12.3

*Value from one test only

At room temperature, alloying with indium increased the ultimate tensile strength of 2090
based alloys, but had no effect on yield strength as shown in Fig. 6. The addition of indium,
however, was not as effective as using a post-solution heat treatment stretch to increase the
ultimate strength. Specifically, 2090-T8 had higher strength compared to the base 2090-T6
and 2090+In-T6 at an aging time of 20 hours. This result is consistent with hardness values
shown in Fig. 4 for an aging time of 20 hours at 160°C. Another observation that can be
made from Fig. 6, is that there was a continuous increase in yield strength and ultimate tensile
strength with increasing aging time for both alloys. This indicates that substantial overaging,
as measured by yield strength, did not occur even at an aging time of 120 hours.

6O0

I • 20g0+ln-T6 t
550 • 2090-T6

x 20gO-T8

5OO

Slrength,
MPa 450

4O0

UTS

x_ o_ 12090-T8)

fYs
300 ! , J i I | !

0 20 40 60 80 100 120

Aging lime, hnz

Figure 6 - Variation in room temperature strength with aging time at ]00°C.



At cryogenic temperatures, the addition of indium significantly increased the ultimate
tensile strength, and notably also the yield strength, Fig. 7. Furthermore, Fig. 8 shows that
there was an improvement in yield and ultimate tensile strengths of 2090 baseline and
2090+In-T6 alloys at cryogenic temperatures; behavior which is characteristic of A1-Li alloys.
Increased strength of AI-Li alloys at low temperatures has been related to an increase in the
thermal component of strength due to the temperature dependence of solute atoms which act as
weak barriers to dislocation movement and to an increase in the strain hardening rate (I0,11).
Finally, the cryogenic yield and ultimate tensile strengths of 2090-T8 were higher than both
2090 baseline and 2090+In-T6, similar to the trends observed at room temperature.

600

,550

500:

S_g_,
MPa 450

4O0

350

300 '
0

x
UTS

xo or= (2090-T8)

-YS

• 2090-T6
x 2090-T8

l I l I I I

20 40 60 80 100 120

Aging t_me, hrs

Figure 7 - Variation in cryogenic strength with aging time at 160°C.
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40C

350

3O0

0 2090+In-T6 I

• 2090-T6 J

I I I
-200 -10O 0 100

Temperature, ¢'C

Figure 8 - Ambient and cryogenic tensile properties of 2090 and 2090 + In aged at 160°C for
75 hours.



Increasesin theelongationandmodulusatcryogenictemperaturesarealsocommonfor
A1-Li alloysandthedatafrom thepresentinvestigationareconsistentwith this trend(1,12).
Theoveralltrendwasfor a significantincreasein elongationto failureat -185°C. It is also
apparentthat the improvementin strengthfrom indiumadditionsdid not result in lossof
ductility. Most of thealloys in this studyalsoshoweda modestincreasein the cryogenic
modulusof approximately2%, however,the 2090+Inalloy exhibitedan increasein the
cryogenicmodulusof approximately11%atanagingtimeof 75hoursandapproximately5%
atanagingtime 120hours.

Conventionalcryogenic tank material 2219-T87 showed the same trend of increasing
strength, elongation and modulus with decreasing temperature as did the AI-Li alloys.
However, 2219-T87 had a much lower modulus at both 23°C and -185°C.

Comparison of the hardness behavior in Fig. 4 with the ambient ultimate tensile
properties in Fig. 6 revealed that in both cases the addition of indium had its most
pronounced effect at longer aging times. Furthermore, the observation that indium enhanced
the ambient ultimate tensile strength, but had no effect on the yield strength suggests that
indium promotes work hardening in these alloys. However, this hypothesis is complicated by
the fact that the microstructure of the indium-modified material was partially recrystallized.
The decrease in yield strength typically associated with a partially recrystaUized structure could
be offsetting any beneficial that indium has on the ambient yield strength. The actual
mechanism by which indium additions improve the yield strength at cryogenic temperatures
remains to be determined.

2. Kahn Tear Tests

The Kahn Tear test, because of its advantage in terms of simplicity and specimen size,
was used to rank alloys and tempers in terms of relative toughness. Historically, two
parameters from the Kahn Tear test, UPE and tear strength to yield strength ratio (TS/YS),
have been used to screen sheet toughness of aluminum alloys. There are, however, some
problems associated with this approach. For example, the separation of initiation energy and
propagation energy at maximum load, Fig. 3, is arbitrary and does not necessarily coincide
with the actual load and deflection at which a crack initiates from the machined notch. Also,

traditional correlations of UPE with Klc seem inappropriate for A1-Li alloys where crack
deflection during the tear test is common and results in a measured propagation energy which
has no relationship to material initiation toughness. Therefore, the tear strength to yield
strength ratio which measures the resistance of a material to fracture in the presence of a stress
raiser (6) was used as a relative measure of the toughness of the AI-Li alloys in this study.

Results of Kahn Tear tests at ambient and cryogenic temperatures are shown in Table II1.
Conventional cryotank material 2219-T87 exhibited relatively no change in the TS/YS ratio
and an increase in UPE at cryogenic temperatures consistent with other investigations (8,13).
In contrast, the baseline 2090-T8 alloy had lower toughness at cryogenic temperatures.

Figs. 9 and 10 show the variation in tear strength to yield strength ratio with temperature
for 2090+In and 2090 alloys in the three aging conditions studied in this investigation. Both
alloys exhibited a significant decrease in the tear strength to yield strength ratios with
increasing aging time when tested at room and cryogenic temperatures. The relative decrease
in toughness with increasing aging time can be attributed to increased yield strength and to an
increase in grain boundary precipitates at longer aging times which promote intergranular
microvoid fracture in AI-Li alloys (14).



Table II1. Kahn Tear Results of AI-Li and 2219 Alloys

Alloy Aging Time Temp. TS UIE UPE TS/YS
hrs. C MPa Nmm/mm 2 Nmm/mm 2

2090+In-T6 20

2090-T6

2090-T8

2219-T87

75

120

2O

75

120

2O

23
-185

23
-185

23
-185

23
-185

23
-185

23
-185

23
-185

23
-185

487
460

394
346

307
304

502
523

401
397

393
362

465
438

483
565

96.0
70.2

59.7
32.8

28.4
25.9

58.8
46.2

69.5"
37.7

82.3*
58.3

98.6
96.0"

43.3
9.5

1.2
1.7

0.3
0.5

53.8*
23.6

11.2
3.5

2.1"

2.1

19.1 *
34.3

*Value from one test only

1.52
1.29

1.07
0.79

0.79
0.70

1.53
1.47

1.10
1.04

1.01
0.95

1.13
0.94

1.27
126

2.0

TS_'S

1.5

s,

1.(

0.!

t
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20 hPa

...-.1 75 hours
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Figure 9 - Tear strength to yield strength ratio of 2090 + In-T6 at - 185°C and 23°C for various

aging times at 160°C.
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Figure 10 - Tear strength to yield strength ratio of 2090-T6 at -185°C and 23°C for various
aging times at 160°C.

The 2090+In and 2090 baseline alloys both exhibited a decrease in relative toughness
when tested at cryogenic temperatures as indicated by the decrease in tear strength-yield
strength ratios shown in Figs. 9 and 10, respectively. The decrease in the cryogenic
toughness of these A1-Li alloys tested in the LT orientation is contrary to many li/erature
results reported to date. For example, significant increases in toughness at cryogenic
temperatures have been observed for many AI-Li plate alloys: 2090- T8E41 (1,15), 2090-T8X
(16), 2090-'I"81, 2090-T351, 8090-T8X and 8091-T8X (15). The mechanisms to account for

the increase in toughness at low temperatures focus on higher strain hardening rates at
cryogenic temperatures and the loss of through thickness constraint from enhanced
intergranular splitting, with no associated change in the fracture mode. In contrast, observed
decreases in toughness at cryogenic temperatures have been reported for 2091-T8X, 8090-
T351, and 8091-T351 plate alloys (15). Along with the decrease in toughness of these alloys,
Rao et al. observed a change in fracture mode from ductile microvoid coalescence at ambient
temperatures to transgranular shear with some delamination at cryogenic temperatures. In
2090 sheet alloy thermomechanically processed for SPF and peak aged (17), there was a
change in fracture mode from ductile shear to increasingly intergranular fracture associated
with a loss of toughness at cryogenic temperatures. In the present investigation, a decrease in
toughness at cryogenic temperatures was also observed for sheet alloys which were
thermomechanically processed and aged at 160°C for various times.

Conclusions

A study was conducted to determine the age hardening response and cryogenic mechanical
properties of 2090 and 2090+In sheet alloys. Based on the results of this investigation the
following conclusions can be made:

The effect of minor alloy additions of indium resulting in increased hardness and
strength has been demonstrated for 350 lb. DC ingots of 2090 type alloys. A possible
mechanism to account for this behavior could be related to enhanced work hardening.

. Alloys in this study exhibited increases in yield strength, ultimate tensile strength,
elongation to failure and modulus when tested at cryogenic temperatures similar to
other Al-Li alloys.

. The AI-Li alloys in this investigation exhibited a decrease in toughness, as measured
by a decrease in tear strength-yield strength ratio, at cryogenic temperatures. This
decrease could be related to differences in the rnicrostructure associated with

processing sheet material.



4. For alloysprocessedaccordingto TMT C,solutionheattreatedandaged,indium
additionsto basechemistriespromoterecrystallization.
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THE CORROSION BEHAVIOR OF THE T 1 (AI2CuLi) INTERMETALLIC

COMPOUND IN AQUEOUS ENVIRONMENTS

R.G. Buchheit and G.E. Stoner *

The intermetallic compound T 1 (Al2CuLi) is suspected to play an

important role in the localized corrosion at subgrain boundaries

in Ai-Li-Cu alloys. The intermetallic was synthesized for

characterization of its corrosion behavior. Experiments performed

included open circuit potential measurements, potentiodynamic

polarization and corrosion rate vs. pH in solutions whose pH was

varied over the range of 3 to Ii. Subgrain boundary pitting and

continuous subgrain boundary corrosion are discussed in terms of

the data obtained in these experiments. Evidence suggesting the

dealloying of copper from this compound is also presented.

_NTRODUCTION

Aluminum-lithium-copper alloys have demonstrated a susceptibility

to localized corrosion when exposed to aqueous chloride

environments. The T 1 phase, the dominant subgrain boundary

precipitate in AI-Li-Cu alloys, has been implicated in

preferential subgrain boundary corrosion which is widely thought

to contribute to intergranular and stress corrosion cracking in

these alloys (1-7).

At least two mechanisms involving T 1 have been proposed for

preferential subgrain boundary corrosion. The first mechanism

proposes that the T 1 precipitate is the most active phase present

1



in 2090 and subgrain boundary corrosion proceeds by selective T1

dissolution (1-6). This argument is based largely on the

speculation that the high lithium content of the T1 precipitate

makes it an extremely active phase. A second, less widely

accepted mechanism in AI-Li-Cu alloys proposes that a copper

depleted zone forms along a subgrain boundary as subgrain

boundary T1 plates grow during aging (7). The copper depletion

occurring in these zones renders them active and subgrain

boundary corrosion proceeds as these regions dissolve. This

mechanism, proposed to occur in AI-Cu and Al-Cu-Mg alloys (8-12),

is based on the observation that as aging time increases,

subgrain boundary pitting increases but matrix (subgrain

interior) pitting does not.

Proponents of the second mechanism assert that the above

observation is inconsistent with a selective T1 dissolution

mechanism since T1 precipitation within subgrains occurs as the

peak aging times are approached.

The first objective of this study was to synthesize the T1

intermetallic in bulk form so that conventional electrochemical

test techniques could be employed to generate ancillary data on

its corrosion behavior. The second objective of this study was to

compare the corrosion behavior of the precipitate phase to that

of a copper depleted zone and the _-AI matrix to clarify the

mechanism of subgrain boundary corrosion.

Open circuit measurements, cyclic potentiodynamic

polarization and corrosion rate determinations were employed in



the present study. These experiments were carried out on three

different materials intended to simulate the three different

phases suspected to participate in subgrain boundary corrosion

processes. Solution heat treated (SHT) 2090 was used to simulate

an _-AI matrix, ii00 A1 was used to simulate a copper depleted

zone (a worst case scenario considering the ennobling effects of

copper in aluminum) and the synthesized T1 was used to simulate

the subgrain boundary precipitate phase.

EXPERIMENTAL PROCEDURE

Materials Preparation

A 600 gram T 1 ingot was prepared by mixing stoichiometric

amounts of A1 (99.9), Cu (99.9) and Li (99.5). The components

were melted in an induction furnace under 1 atm argon. The melt

was allowed to solidify in the crucible. Qualitative analysis by

X-ray diffraction was performed on two different powder samples

collected while sectioning the ingot. All measured peaks

corresponded to T 1 peaks suggesting that the ingot was largely

T I. The diffraction data and JCPDS Card File data are listed in

Table i. It should be noted that the relative intensities for

some of the measured peaks are not consistent with those from the

reference. However, the data cited in the JCPDS Card File were

T 1 reflections obtained from X-ray diffraction of dilute AI-Li-Cu

alloys while the peaks measured here were from a bulk sample

(13). Pathological overlap of peaks from some other compound was

considered as a factor contributing to the anomalous relative

intensities. However, none of the possible compounds fit the

measured peaks.
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The 2090 alloy used in this study was provided by the Alcoa

Technical Center, Pittsburgh, PA. The alloy was 38 mm plate

solution heat treated and subjected to a 6 % stretch. The pure

aluminum used here was a 99.99 % cast aluminum ingot.

The T1 specimens were prepared for tests by sectioning using

a low speed diamond wheel, mounting in epoxy and dry polishing

through 600 grit Sic. The SHT 2090 and II00 A1 specimens were

prepared by wet polishing through 600 grit SiC.

Open Circuit Potential Measurements

Open circuit potentials were measured for the synthesized

TI, II00 aluminum and SHT 2090 using a PAR Model 173

Potentiostat/Galvanostat controlled by an electrochemical

experiment software package. A PAR 276 Interface linked the

potentiostat to an ATT PC which was used for data collection and

storage. Measurements were made for each material in aerated

3.5 w/o NaCl solution, argon deaerated 3.5 w/o NaCl solution and

per ASTM G69 (Measurement of Corrosion Potentials in Aluminum

Alloys). In the deaerated and aerated solutions, the open circuit

potential was monitored as a function of time until a steady-

state response was obtained. The stabilized potential was then

recorded. In the ASTM solution (58.5 g/l NaCl + 3 ml/l 30%

H202) , the open circuit potential was determined per the

specification.

Potentiodynamic Polarization

Cyclic potentiodynamic polarization was performed on the T 1

ingot, II00 aluminum and solution heat treated 2090 in aerated



and deaerated (argon) 3.5 w/o NaCl solution. Experiments were

performed using the standard three electrode configuration in a

cell driven by the equipment described above. A scan rate of 0.I

mV/sec was used in each experiment.

Corrosion Rate Measurements

Corrosion rate measurements were performed using a Tafel

line extrapolation technique. Potentiodynamic polarization was

used to generate the potential vs. log current density response

over a range of I00 millivolts on either side of the corrosion

potential. A curve fit was performed on the anodic and cathodic

charge transfer regions to obtain Tafel line equations. The

Tafel equations were solved simultaneously to obtain the

corrosion current and the corrosion potential. The curve fits

were considered acceptable if the corrosion potential obtained by

solving the equations and the measured corrosion potential

differed by no more than 5 mV.

This experiment was performed on the synthesized T 1 phase in

aerated 3.5 w/o NaCl solutions whose pH was adjusted using HCl

orNaOH. Six experiments were performed for solution pH values of

3, 4, 6, 8, i0 and ii.

Results

Open Circuit Measurements

Table 2 lists the open circuit potentials measured for TI,

Ii00 A1 and SHT 2090 in the three environments used in this

study. The initial potential measured for T 1 specimens was

typically i00 mV more active than the steady-state potential.
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Potentiodynamic Polarization

All three materials were subjected to cyclic polarization

but only plots for T 1 and ii00 A1 in deaerated 3.5 w/o NaCl

solution are presented here (figs. la and b). The scans were

begun at point (A) on the diagram in the positive direction.

Point (B) indicates the corrosion potential on the positive scan.

The scan is continued to -0.5 VSC E then reversed. Point (C) is

the corrosion potential on the return scan.

Corrosion Rate Measurements

Figure 2 is a plot of T 1 corrosion rate (Log corrosion

current density) vs. pH. Data for the corrosion rate of pure

aluminum is also plotted in this figure for comparison (14).

DISCUSSION

The Role of T 1 in Subgrain Boundary Corrosion

Relative Corrosion Behavior. Table 3 lists the corrosion

potentials and corrosion current densities for the three

materials used to simulate the phases present in the subgrain

boundary region. In deaerated solution the corrosion potentials

of the II00 A1 and the T 1 are very nearly equal. However, a

comparison of the corrosion current densities shows that the T 1

phase would corrode much more quickly than a copper depleted

region along a subgrain boundary.

Subgrain Boundary Pittinq. Figure 3a is an optical micrograph of

a surface of a 2090 aged 14 hours at 162°C and subjected to

6



anodic polarization in 3.5 w/o NaCl solution. The surface is

characterized by many small pits, most of which have formed along

the subgrain boundaries. This type of attack is widely

attributed to the selective dissolution of T1 precipitates on the

subgrain boundaries. The pH of this solution is typically in the

range of 5 to 5.5 in this type of experiment. An examination of

Figure 2 shows that in this pH range the corrosion rate of pure

aluminum (a similar response for a _-AI matrix is observed) is

near its minimum while the T1 is dissolving at a rate of 0.I

mA/cm2.

The second aspect of subgrain boundary attack discussed here

concerns the pitting behavior of the subgrain boundary region and

the subgrain interiors. It has been observed that subgrain

boundary pitting increases as aging time increases. Pitting of

the subgrain interiors, on the other hand, is minimal and largely

insensitive to aging up to the peak aged condition (7,18). This

behavior appears to be inconsistent with a selective T1

dissolution mechanism since matrix precipitation of T1 is known

to occur; particularly in alloy products stretched prior to

aging.

There are, however, two important differences between

subgrain boundary and subgrain interior T1 precipitation. First,

along a given segment of subgrain boundary, only one T1 variant

is observed (19). That is that all the precipitates have the

same orientation and the average plate spacing is quite small.

In the subgrain interior, different variants can exist and the

average plate spacing is greater. The second difference is that
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T1 precipitates on the boundary are generally larger than

precipitates within the matrix (5). Based on these observations,

the dissolution of a T1 plate on the boundary is more likely to

expose another T1 plate than the dissolution of a matrix plate.

As a result, subgrain boundary pitting is more sensitive to aging

than matrix pitting up to the peak aged condition.

Continuous Subqrain Boundary Corrosion. In occluded environments

like pits and crevices, the corroded subgrain boundary region

exhibits a different type of morphology (fig. 3b). In this

situation, the subgrain boundaries are continuously attacked in a

fashion which is usually termed intergranular or interfragmentary

corrosion (6,15). Pits and crevices in AI-Li-Cu alloys have

solution pH values reported to be in the range of 3 to 4.5 when

coupled to an aerated, chloride-containing bulk environment

(16,17,18). When not coupled to a bulk environment an alkaline

pit and crevice solutions develop. Reported pH values range from

9 to II in this situation (16,17,18). These regions are

indicated in Figure 2. In these regions £he corrosion rate of

aluminum is increased compared to that observed at intermediate

pH values.

The corrosion morphology and corrosion rate data suggest a

two part process for this type of attack:

i.) T 1 precipitates on the subgrain boundaries dissolve

2.) The dissolution of the T 1 exposes _-AI subgrain faces

whose corrosion rate is increased in the crevice

solution generating the continuous subgrain boundary



corrosion.

Copper Dealloying

The dealloying of copper has been observed in Al-Cu-Mg and

AI-Li-Cu precipitation hardened alloys (8,16,17,18). Copper

enrichment around pits and crevices in AI-Cu-Mg and AI-Li-Cu

alloys suggests that dissolved copper ions are physically

transported through solution from the site of dissolution to a

site favorable for their reduction (11,17,18). Copper deposits

near a crevice or pit can accelerate localized corrosion by

facilitating hydrogen reduction kinetics. Table 4 compares

hydrogen reduction kinetics on copper and aluminum.

Visual examination of T 1 specimens after exposure to an

aqueous environment showed, without exception, that the specimen

surface was covered with a copper colored layer. However, X-ray

microanalysis of exposed and unexposed T 1 surfaces could not

conclusively distinguish copper enrichment due to the high copper

content of the T 1 phase (25 a/o).

Data obtained in polarization experiments using T 1 supports

a copper dealloying process of this phase. Figure la shows a

polarization curve for II00 A1 in deaerated solution. In this

experiment, the corrosion potential on the return scan is more

negative than the corrosion potential on the positive scan. This

type of response is expected since the surface is pitted during

the scan through the transpassive region. On the return scan (the

negative direction), more total current is passed at the

9



corrosion potential causing a shift in the active direction (C).

A different situation exists for a T1 specimen subjected to

the same type of experiment (Fig. Ib). In this case, corrosion

occurring in the transpassive region causes the surface of the

electrode to become enriched with copper by the dealloying

process. On the return scan, the electrode has been ennobled by

the copper and the exchange current density for the hydrogen

reduction reaction has been increased. As a result the corrosion

potential is shifted in the positive direction (C).

CONCLUSIONS

i.) Based on open circuit potential, potentiodynamic polarization

and corrosion rate determinations, T 1 is an extremely active

phase with a corrosion potential of -ii00 mVsc E and a corrosion

current of 0.i mA/cm 2 in 3.5 w/o NaCl solution.

2.) Corrosion rate data and corrosion morphology in the subgrain

boundary region suggest that T 1 plays an important role in both

subgrain boundary pitting and continuous subgrain boundary

corrosion associated with occluded environments.

3.) Visual examination and polarization behavior support copper

dealloying of the T 1 phase in AI-Li-Cu alloys
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TABLE 1 - X-ray Diffraction Data for AI2CuLi

Reference (JCPDS #28-12)

dA I/I 1

Measured

dA I/I 1

9.39 20

4.69 I00

4.31 30

3.90 30

3.15 30

2.53 20

2.333 60

2.187 30

2.145 I00

2.047 30

1.949 i00

1.865 20

1.70 i0

1.62 i0

1.579 30

1.554 i0

1.53 i0

1.468 20

1.41 I0

1.367 30

1.333 30

1.320 30

1.300 i0

1.261 20

1.240 30

4.66 83

4.29 24

3.90 12

3.16 5

2.34 27

2.19 29

2.15 19

2.06 45

1.95 i00

1.71 5

1.58 69

1.46 6

1.33 20

1.24 6

Table 2 - Open Circuit Potentials fin mVscEl

Aerated Deaerated ASTM G69

II00 A1 -820 -1020 -840

SHT 2090 -730 -730 -740

Al2CuLi -ll00 -1055 -815
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TABLE 3 - Corrosion Potentials and Corrosion Currents for

ii00 AI, SHT 2090 and T1 _Al2CuLi)*

ECORR iCORR,

(mVSc E) (A/cm _ )

ii00 A1 -1020 3.3 x 10 -7

SHT 2090 -730 2.8 x 10 -7

T 1 -1055 8.0 x 10 -5

*in deaerated 3.5 w/o NaCl solution

TABLE 4 - Exchanqe Current Densities and Hydroqen Overpotentials

for Aluminum and Copper* (20,21)

i o (A/cm 2) _ (V)

Aluminum

Copper

* in 1 M H2SO 4.

3.16 x i0 -I0

3.16 x 10 -7

very large

0.19
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Figure 3 a. Optical micrograph of subgrain boundary pitting.

Figure 3 b. Optical micrograph of a large pit showing continuous
subgrain boundary corrosion.
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SOLUTION CHEMISTRY EFFECTS ON THE STRESS CORROSION CRACKING

BEHAVIOR OF ALLOY 2090 (AI-Li-Cu) AND ALLOY 2024 (AI-Cu-Mg)

James P. Moran and Glenn E. Stoner

Center for Electrochemical Sciences and Engineering

Dept. of Materials Science, The University of Virginia

Charlottesville, VA 22901

(As submitted to The 5th Int'nl AI-LI Conference, March, 1989)

ABSTRACT

The stress corrosion cracking (SCC) initiation behavior of alloys 2090

and 2024 was investigated in various NaCl-based environments. SCC specimens

immersed in NaCI did not fail after as long as 30 days. However, for

specimens removed from NaCl after 6 days, exposure to lab air resulted in

fracture within 24 hours, while exposure to a CO2-FREE environment did not

promote fracture. Constant immersion in NaCI/Li2CO 3 accelerated SCC, while

immersion in NaCI/Na2CO 3 did not promote failure. In addition to SCC data,

polarization experiments and simulated-crevice pH measurements were performed.

Based on these data, a mechanism of passlvation by precipitation of Li2CO 3 is

suggested to account for the changes in SCC behavior. The effects of

bulk/local solution chemistries on SCC are shown to overshadow microstructural

changes caused by aging.

INTRODUCTION

Aluminum-lithium-copper alloys have been observed to be susceptible to both

localized corrosion and stress corrosion cracklmg (SCC) in chloride containing

environments. Much of the available evidence suggests that the subgrain

boundary phase T I plays a major role in the pitting and SCC behavior (1-5). A

common factor in most of the proposed mechanisms is the dissolution of T I.

The role of localized environments in the SCC performance of AI-Li alloys

has also been investigated (6-8). Several investigators have shown that

alternate immersion enhances SCC rates, relative to constant immersion, for

8090 (6,7) and 2090 (8). Alloy 8090 was found to be immune to SCC when

1



constantly immersed in NaCI solutions, but can fail rapidly when removed from

solution and exposed to lab air (7). Removal into a CO2-FREE environment,

however, did not promote failure. Under constant immersion, the occluded

environment is considered too aggressive, thereby promoting general

attack within the fissures. The need for CO 2 is attributed to its role in the

carbonation and acidification of alkaline fissures, eventually producing

passivation by precipitation of LiAIO2, creating a critical active/passive

balance, necessary for SCC. Constant immersion of 8090 in NaCl with Li2CO 3

additions promoted accelerated SCC, with a similar active/passlve balance

being the suggested mechanism (7).

In the present work, the pre-exposure and bulk/local solution chemistry

effects discovered by Holroyd et al. (6,7) on 8090-type alloys have been

investigated for alloy 2090. Emphasis is on the effect of bulk solution

chemistries and atmospheric CO 2 on the occluded cell environment, and the role

of the occluded environment in the crack initiation and early-stage propaga-

tion processes.

Material

EXPERIMENTAL PROCEDURE

Both alloys were commercially prepared 38 mm ingot-cast plates. The 2090

plate was supplied by The ALCOA Technical Center, Pittsburgh, PA. It was

solution heat treated and subjected to a 6% deformation prior to shipping. The

2024 plate was purchased in a T-351 temper. Aging times and temperatures,

along with average mechanical properties are given in TABLE I.

TABLE I - Summary of aging times and mechanical properties,

.................................................................

Alloy Temper Aging Temp. Aging Time YS UTS Plastic

(°C) (hours) (MPa) (MPa) Strain (%)

.................................................................

2090 UA* 160 4 385 530 4.0

2090 PA 160 13 440 490 1.0

2024 UA 190 3 470 500 4.0

UA - Under-aged, PA - Peak-aged



SCC Testing

All SCC experiments were of the Time-to-Failure (TTF) type. Smooth

tensile bars (gage length - 3 mm dla x 20 mm) were machined such that the

stress would be applied in the short transverse direction. Specimens were

stressed, using ASTM G-49 stressing frames, to an arbitrarily chosen value of

240 MPa (55-65% of yield strength). The combination of poor fracture

toughness (9), low ductility and small tensile bar diameter should produce

fast fracture of 2090 specimens after a relatively limited amount of sustained

=rack growth. Therefore, times-to-failure should provide a reasonably accurate

measure of crack initiation times. Reported TTF's represent the average of

5-8 specimens.

Constant immersion experiments. Test solutions were naturally aerated 3.5 w/o

NaCI in distilled water, with individual additions of selected species (see

TABLE 3). All solutions were buffered with dilute HCI or NaOH to pH-10.

Stressed specimens were then immersed in these environments until failure.

Pre-exposure experiments Stressed specimens were immersed in 3.5

w/o NaCI (bulk pH _ 6) for a period of six days. Upon removal

from the solution, the specimens were lightly rinsed with

distilled water, followed by exposure to laboratory air or

exposure to a C02-free environment (an enclosed container of

super-saturated NaOH solution).

Potentiodynamic Polarization Scans

Potentiodynamic polarizations were performed on both alloys using the

standard three-electrode configuration (SCE reference, Pt counter) in a cell

driven by a PAR 273/351 automated corrosion measurement system. After

immersing a specimen in solution and allow'ing a steady-state corrosion

potential to develop (typically 4-6 hours), a polarization scan was performed,

starting at the corrosion potential, and scanning in the electro-posltlve

direction at a rate of 0.2 mV/sec. Triplicate tests were conducted in all

solutions used for constant immersion SCC tests.



Simulated Crevice Experiments

A cylindrical bore 2.5 mm in diameter and I0 mm in depth was machined

into blocks of alloy measuring i x I x 1.5 cm. The barrel of a pH micro-

electrode (= 2.45 mm diameter) was inserted into the bore to form a crevice.

Alloy 2090 was subjected to all SCC test environments, including a pre-

exposure simulation (after immersion in NaCI, the bulk environment was

removed, thus isolating the crevice). Alloy 2024 was subjected only to NaCI

and pre-exposure simulation. Two to three specimens were subjected to each

environment, with good experimental agreement.

RESULTS

_CC Results

Pre-exposure experiments, After a six-day pre-exposure in NaCI, the surfaces

of the pre-exposed specimens were decorated with numerous, relatively large

pits, as illustrated in Fig. la. Upon removal from solution, 2090 exposed to

lab air exhibited failure times of roughly 12 hours. Fig. Ib illustrates a

sharp crack growing from one of the blunted surface pits. Exposure to a

CO2-FREE environment, however, did not produce fracture after more than 60

days. This is in good agreement with earlier work on alloy 8090 (6,7).

Alloy 2024 did not fail in normal lab air; however, exposure to lab air of

near 100% relative humidity (R.H.) did produce fracture after 4-6 days.

Surface plts similar to those observed on 2090 decorated the surface of the

2024 tensile bars.

Constant immersion experiments. TABLE 3 summarizes the TTF data for the

various test environments. For alloy 2090, no failures were observed in NaCI

or NaCI/Na2CO 3 solutions. Surface attack and pitting occurred in both of

these environments, with NaCI/Na2CO 3 being the more severe of the two.

Immersion in NaCl/ Li2CO3, however, promoted rapid failure (1-2 days).

Examination of the tensile bar surface revealed that only extremely limited

pitting had occurred, relative to the other environments. This remained true

even for specimens left immersed, after fracture, for 30 days. Immersion in

NaCl/LiCl solution produced only moderate increases in failure rates (10-15

days), and resulted in tensile bar surfaces similar to those in NaCI (e.g.,

Fig. la).



TABLE 2 - Times to Failure (days) After NaCl Immersion For 6 Day_.

ENVIRONMENT Alloy Alloy
2024 2090UA

.................................................................

Lab Air (= 50% R.H.) > 60* 0.6+0.1-*

Lab Air (= 100% R.H.) 5+1 ---

CO2-Free Air (= 100% R.H.) > 60 > 60
.................................................................

TABLE 3 - Times to Failure (days) Under Constant Immersion.
.. ...............................................................

ADDED Alloy Alloy Alloy
SPECIES*** 2024 2090UA 2090PA

.................................................................

None > 60 > 30 > 30

LiCI > 60 16.0±3.0"* 10.7+_2.7

LI2CO 3 5.7±1.5 1.0±0.3 1.70±.1

Na2CO 3 > 60 > 60 > 60
.................................................................

TABLE 4- Polarization Data for Alloy 2090, Peak-Aged.

ADDED Ecorr iDass ° Ebr
SPECIES*** (mV vs. SCE) (_A/cm _) (mY vs. SCE)

.................................................................

None -735±13"* .... 725±7

LiCI -735±6 .... 735±6

Li2CO 3 -737±5 0.75 -600±21

Na2CO 3 -1210±I0 56 -370±13
..................................................................

Footnotes to Tables 2-4:

* "> X" - Test ended after X days, with no failures.

** Mean ± Standard Deviation.

*** All environments have aerated 3.5 w/o NaCl as their base, with

0.i M of the listed species added. The exception is LiCl,

where 0.2M LiCl was added to 2.6 w/o NaCI, in an effort to

keep CI- and Li+ concentrations consistent with LI2CO 3. All

initial pH - 10. Chemicals were all reagent grade.
.................................................................



In those environments that did promote failure, there appears to be some

effect of aging time. For NaCI/Li2C03, peak-aged specimens failed in roughly

twice the time as under-aged, on average. The opposite effect was observed

for NaCI/LiCI, with the under-aged temper TTF's being slightly longer than

peak-aged.

The constant immersion data for alloy 2024 exhibit trends similar to

those of alloy 2090, with two exceptions : no failures were observed in

NaCI/LiCI, and failure times in NaCI/Li2CO 3 were = 2-3 times longer than

2090. Tensile bar surface conditions were similar to those of 2090 specimens.

Polarization Data

TABLE 4 summarizes the anodlc polarization behavior for alloy 2090 peak-

aged. The corrosion potential (Ecorr) was independent of environment, with the

exception of NaCI/Na2C03, where a 400 mV decrease was measured. No passive

current was measured in NaCI or NaCI/LICI, indicating that 2090 is above its

pitting potential in these environments. A passive region was observed,

however, in NaCI/Li2CO 3 for approximately 135 mV. These values are consistent

with the appearance of the tensile specimen surfaces; pitting was readily

observed in NaCI and NaCI/LiCI, but not in NaCI/Li2CO 3. Exposure in

NaCI/Na2CO 3 promoted a large "pseudo-passive" region. The term "pseudo-

passive" is chosen here because, although the region is indeed potential-

independent, the current density is still relatively large. Although the

breakaway potential is unusually high, the large current density and associat-

ed active corrosion potential result in this being a severely corrosive

environment. These data are consistent with a recent study of the polariza-

tion behavior of alloy 6061 in [alkali metal]-carbonate solutions, although

the addition of chloride appears to have magnified the differences of Li + vs.

Na + (i0).

S%mulated Crevice Measurements

Figure 2 illustrates the occluded cell pH response for alloy 2090 peak-

aged. The highly buffered carbonate solutions remain at pH-10. The NaCl and

NaCI/LiCl environments, however, exhibit a rapid decline initially, followed

by a gradual decline to pHi4. For an initial solution pH of 6, a slight

increase is observed early, followed by gradual decline to pHi4. The pH

response for simulated pre-exposure conditions is displayed in Figure 3. A
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gradual increasing trend is observed for both 2090 and 2024.

DISCUSSION

Role of CO 2 in the SCC Process

Perhaps the most significant result of this work is the effect of atmospheric

CO 2 on the SCC behavior of pre-exposed specimens. With this in mind, the

following discussion will propose a series of critical events occurring during

the pre-exposure process, with emphasis on the role of CO 2 in the formation of

a SC crack. Supporting experimental evidence will be included where appropri-

ate.

Upon immersion in NaCI, intergranular fissures initiate at surface flaws and

propagate inter-subgranularly. In the presence of a bulk solution, oxygen

reduction on the external surfaces will be the primary cathodic reaction.

Therefore, cathodic consumption of H+ within the fissure will be minimal, and

the occluded pH should be governed by the following AI(III) hydrolysis

equilibria (see Fig. 4) (Ii,12) :

AI 3+ + H20 = AIOH 2+ + H+ PKll - 4.97 (I)

AI 3+ + 2H20 = AI(OH)2+ + 2H+ PKl2 - 9.9 (2)

A13+ + 3H20 = AI(0H) 3 + 3H+ PKl3 - 15.6 (3)

These equilibria predict a steady-state pH=4, as measured (Fig. 2). The rate

of metal dissolution should continue to increase as the pH decreases, thereby

inhibiting the formation of a sharp crack tip.

Removal of the bulk solution forces the cathodic reaction (hydrogen

evolution) to occur within the fissures. The consumption of H+ gradually

increases the fissure pH, as measured (Fig. 3). As pH increases, the

solubility of AI (III) decreases (Fig. 4), most likely promoting precipitation

of AI(OH) 3. As the pH rises above 7, the equilibrium pH should be governed be

Eq. 3 and:

AI 3+ + 4H20 = AI(OH) 4" + 4H + PKl4 - 23 (4)
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In the presence of Li + the insoluble (13) LiAIO2 should precipitate (AIO2" is
equivalent to AI(OH)4- 2H20).

Although the above series of events predicts precipitation of at least
two species, it is unlikely that these species play a major role in the

passivation of fissures, since their precipitation will occur with or without

the presence of atmospheric CO 2. On the other hand, atmospheric CO 2 will

directly effect the concentrations of dissolved CO 2 and its ionic species,

which are governed by the following equilibria (14,15) and Henry's Law (15)

(see Fig. 5):

CO 2 (g) = CO 2 (aq) PKaq - 4.97 (5)

CO 2 (aq) + H20 = HCO 3" + H+ pK I - 5.75 (6)

HCO 3" + H20 = CO32- + H+ pK 0 - 9.10 (7)

As the pH increases (due to hydrogen evolution), these equations predict the

percentage of CO 2 in its ionic forms will increase. This is where the

presence of atmospheric CO 2 becomes critical. Figure 6 predicts the total

concentrations of dissolved CO 2 species with and without exposure to atmos-

pheric CO 2 (i.e. saturated and unsaturated, respectively). From these

calculations, it is evident that as the alkalinity of a fissure increases, the

concentrations of bicarbonate and carbonate will be orders of magnitude

greater in the presence of atmospheric CO 2.

Given the fact that atmospheric CO 2 will significantly increase the

carbonate/bicarbonate concentration within fissures, the next issue to be

addressed is the role of this increased concentration in the SC initiation

process. The evidence suggests a mechanism of fissure passivation by

precipitation of Li2CO 3. Upon removal of the bulk solution, continued metal

dissolution should increase the local Li + concentration ( [Li +] ), and

exposure to CO 2 will increase [CO32" ]. Given the low solubility of Li2CO 3

(.p_-2.74) (13), it is likely that precipitation of Li2CO 3 could occur, and

its passivating nature has been documented in this and earlier work (I0).

As an example, consider a local pH of i0. Without CO 2, precipitation is

predicted at [Li +] - 13 Molar; however, exposure to CO 2 would allow precipita-
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tion at [Li +] - 0.i Molar. Unfortunately, this lithium concentration is
roughly 50 times higher than measuredvalues for 8090 crevices (6), and a high

pH is not achieved (Fig. 3). Nevertheless, it is likely that the local pH and

lithium concentration at the base of a fissure could be greater than the

measured averages, thus exceeding the local solubility. In addition, the high

total ionic concentration will tend to decrease the solubility (13,14).

The constant immersion data is consistent with this argument. Exposure

to NaCI/LiCI did not promote failure. NaCI/Na2CO 3 also did not promote

failure, and the solubility for Na2CO 3 is 2-3 orders of magnitude higher than

LI2CO 3 (13). Neither lithium alone nor carbonate (and its buffered pH) alone

was a sufficient requisite for the passivity of fissures.

A similar argument can be made for alloy 2024, with passivation now

occurring by precipitation of Mg2CO 3 (PKsp - 4.59) (13). The fact that 2024

did not break in lab air could be due to evaporation prior to achieving a

critical crack length. Cracking was achieved under 100% R.H., but again only

in the presence of atmospheric CO 2.

Effects of Aging

The trend of improved SCC resistance with increased aging observed for

NaCI/LI2CO 3 is consistent with the literature (1,2,6). The opposite trend,

however, is displayed for NaCI/LiCI. Clearly, more work is needed to better

define the effects of aging, and further experiments are planned and underway.

Nevertheless, one observation is already clear namely that the changes in

SCC performance due to aging are quite small, relative to the effects of the

bulk and local environments.

CONCLUSIONS

i) Constant immersion in NaCI does not promote SCC in alloy 2090 or alloy

2024. Upon removal from NaCI, however, SCC is quickly facilitated, but

ONLY in the presence of atmospheric CO 2.

2) The need for CO 2 is attributed to an increase in carbonate concentrations,

eventually allowing passivation of blunted fissures by precipitation of

Li2CO 3 •



3) Although further work is needed to determine with confidence the effects

of aging on SCC performance of 2090, it is quite clear that any effects due

to aging are small in magnitude, relative to the effects of subtle changes

to the bulk/local solution chemistries.

ACKNOWLEDGEMENTS

This research was sponsored by a fellowship from ALCOA, E.L. Colvin and S.C.

Byrne program monitors. Additional support was provided by a grant from The

NASA, Langley Research Center (Grant No. NAG-145-2), D.L. Dicus, contract

monitor. Special thanks are extended to R.G. Buchhelt, our colleague at UVA.

His input and interaction in this research has been a most valuable resource.

REFERENCES

(I) J.G. Rinker, M. Marek and T.H. Sanders, Jr., "AI-Li Alloys

II", TMS-AIME, Warrendale, PA, 1984, pp. 597-626.

(2) E.L. Colvin, S.M. Murtha and R.K. Wyss, "AI Alloys:Their

Physical & Mechanical Properties",EMAS, West Midlands, UK,

1986, pp. 1853-1867.

(3) C. Kumai, J. Kusinski, G. Thomas and T.M. Devine, Report pre-

pared for USDOE, contract No. DE-ACO3-76SFO0098, March, 1987.

(4) R.G. Bucheitt, Jr., J.P. Moran and G.E. Stoner, work submit-

ed for review to Corrosion, March, 1989.

(5) R. Dorward and K. Hasse, Corrosion, 44, 1988, pp. 932-941.

(6) H.J.H. Holroyd, A. Gray, G.M. Scamans and R. Hermann, "AI-Li

Alloys III", Inst. of Metals, London, 1986, pp. 310-320.

(7) J.G. Craig, R.C. Newman, M.R. Jarret and N.J.H. Holroyd, J.

de Physique, 48, 1987, pp. C3-825 - C3-833.

(8) P.P. Pizzo, In Ref. 2, pp. 627-656.

(9) A.K. Vasudevan, P.R. Ziman, S.C. Jha and T.H. Sanders, Jr.,

iO



In Ref. 7, pp. 303-309.

(i0) J. Gui and T.M. Devine, Scripta Met., 21, 1987, pp. 853-857.

(II) C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations, R.F.

Krieger Publ., Malabar FL, 1986 pp. 112-123.

(12) N.J.H. Holroyd, G.M. Scamans and R. Hermann, Corrosion Chem-

istry Within Pits, Crevices and Cracks, A. Turnbull ed.,

HMSO, London, 1987, pp. 495-511.

(13) Lange's Handbook of Chemistry, J.A. Dean, ed. McGraw-Hill.

(14) T.L. Brown and H.E. LeMay, Chemistry - The Central Science,

Prentice-Hall, 1977, pp. 501-504 and pp. 524-525.

(15) G. Barrow, General Chemistry, Wadsworth, Benton, CA, 1972.

i

Figure I. Micrographs illustrating the pitting behavior of tensile
bars subjected to the pre-exposure test: (a) pits along surface of

specimen; (b) optical cross-sectlon illustrating a crack initiat-

ing from a blunted fissure.
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Figure 2. Simulated crevice pH vs. time data representative of
alloy 2090 in the following environments : (a) NaCI, pH-6 ;
(b) LICI/NaCI or straight NaCI, pH-10 ; (c) LI2CO_/NaCI or
Na2CO3/NaCI, pH-10. Curve (a) is also represent_tige of alloy
2024 in NaCl, pH-7.
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ALUMINUrA- LITHIUM 5

INFLUENCE OF DISSOLVED HYDROGEN ON

ALUMINUM-LITHIUM ALLOY FRA_3,YRE BEHAVIOR

F.C. Rivet" and R.E. Swanson"

The objective of this work is to study the effects of dissolved hydrogen

on the mechanical properties of 2090 and 2219 alloys. Prior to

mechanical testing, potentiostatic and potentiodynamic tests were

performed using NaCl / HC! solutions varying in pH from 1.5 to 7.5 (
3.5% NaCl in deioaized water ). After analysis of the poteatiodynamic

curve for each solution, several potentiostatic experiments were
conducted for various times (from 10 minutes to several hours) with a

cathodic overpotential of 300 mV. These experiments were performed
to select charging conditions. The Charpy tests are part of our study
designed to investigate the effects of temperature, notch orientation,
and notch root radius on fracture behavior. In the present study of
notch orientation, it has been shown that the fracture of L-S and T-S
orientations proceeds via slipping of layers in the S-T direction. The T-
S and L-S orientations fractured with substantially higher propagation
energy than the L-T and T-L orientations, due in large part to the
extensive delamination propagation of the fracture.

INTRODUCTION

By comparison with traditional aluminum alloys, the aluminum-lithium
alloys show many advantages. By adding one weight percent lithium, the

density is reduced by three percent and the elastic modulus, is increased by
six percent. However, the precipitation of the ordered $ phase (AlaLi)

produces lower ductility and fracture toutghness. Mechanical propertie_ of
these new alloys have been the subject otnumerous studies, but corrosion
behavior and, in particular, hydrogen embrittlement require additional
study.

Lithium is a very reactive element; its addition is unfavorable in

corrosion resistance. The precipitation of the _ phase (A1Li) on the grain
boundaries decreases the stress corrosion cracking resistance (1,2). It is

also known that lithium increases the sensitivity to localized corrosion and
m particular pitting corrosion (3). Furthermore, hydrogen embrittlement
tends to be increased by the addition of lithium due to reaction with
hydrogen.

• Department of Materials Engineering
Vl'rginia Polytechnic Institute and State University
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EXPERIMENTAL PROCEDURE

The 2090 alloy had a pancake-shaped grain structure, with average _rain
size of about 1.2 mm by .7 mm by .15 mm. Specimens of 2090 have been
sectioned and mountedin a red bakelite powder. Holes were drilled to
allow for an electrical lead to be attached the 2090 specimen. The samples

were polished successively using 320, 400, 600 grit paper and finished using
diamondpaste down to 1/ma. The potentiostauc and potentiodynamic tests
were performed on an EG&G Model 342 test system.

Charpy.samples have been cut with a size of 55x10x10 mm. Then,
for the four orientations L-T, T-L, L-S, and T-S show in Figure 1, a notch

of 2 mm depth has been cut with a notch root radius of.25 mm. The
samples were heated in an air furnace to various temperatures prior to
testing. The impact test system, a GRC Model 730-1, is instrumented with a
data acquisition and analysis system running on an IBM-PC. Th!s .s.ystem
provides the capability of separating the total impact energy into tmuatton
and propagation components (4).

HYDROGEN CHARGING STUDIES

In this study, test specimens were cathodically charged using the guidelines
proposed by Dull and Raymond (5). Several experiments have been
conducted to determine the best conditions to create hydrogen

embrittlement without causing macroscopic surface damage. At this time,
the tests have been carried out for variou- s values of pH, regulated by the
addition of HCI in a solution of dionized water containing 3.5 wt% NaC1.
Initially, some potentiostatic and potentiodynamic tests have been
conducted on 2090 alloys.

The potentiodynamic tests give us the value of Ecorr for the
different solutions used. Then, we have been able to find a relation

between the pH and the value of Ecorr, as shown by equation (1) below.

Ecorr(mV/SCE) = -540 - 77.7 pH (1)

This equation can be compared with the one found by Schnuriger et
al (6) to determine the pit generation potential (Ep) as a function of
chloride ion concentration:

Ep(mV/SCE) - -740- 64 log [CI'] (2)

In tests conducted with pH values near 7 (the solution contained no
HC1), two corrosion potentials were detected. A typical curve is shown in

Figure 2. This kind of phenomenon has been previously described by
Moran et al (7). We hypothesize that this represents a change in the
surface layer. This effect will be further investigated.

Several potentiostatic tests have been performed in order to see
whetherpitting corrosion occurs. Our results show that solutions with a pH
under 2.5are too aggressive for this alloy. On the other hand, with the two
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equations described above, we can calculate a potential which will provide
hydrogen evolution, yet minimize the risk of pitting.

Microhardness tests have been performed in order to determine the
time needed to charge the samples in hydrogen, but no reproducible results
had been found. The chloride ions in solution, due to the addition of salt or
HCI, seem to generate, even with precaution, some pitting corrosion on the
surface of our samples. The chloride ions in solution apparently have a
catalytic effect on the surface and increase the rate of p_tting corrosion.
Consequently, the next solution to be evaluated will be H2SO 4 acid in
water without any chloride ions.

EFFEqT OF ORIENTATION ON CHARpY IMPACT ENERGY

In parallel with the electrochemical experiments, some Charpy impact tests
have been performed in order to evaluate the effect of notch orientation.
Four of the six orientations have been tested, namely, T-S, T-L, L-S, and
L-T (Figure 1), for two temperatures: 25°C (70°F) and 200°C (392°F).

The results presented in Figure 3(a) show that the energy, for crack
initiation is virtually the same for the T-S, T-L, and L-T orientauons while

the L-S orientation show a _reater resistance to crack initiation at 25°C, it
has a somewhat lower reststance than the other orientations at 200°C.
Figure 3(b) show that the propagation energy of the L-S orientation is
much greater than the other orientations, with the T-S orientation having a
somewhat greater resistance than T-L or L-T. The total impact energy
curves are shown in Figure 3(c), with the same ranking as shown for
propagation. The L-S samples did not completely break as shown
schematically in Figure 4. The failure mode for the T-S orientation was
similar to that of the L-S samples, but total separation occurred. Fracture
in both the L-S and T-S orientations proceeded by ductile intergranular
separation along the short tranverse plane of the pancake-shaped grains.

Tests have been carried out for the T-L and L-T orientations for

additional temperatures, 25°C, 200°C, 300°C, 350°C, 400°C and 500°C.
Figure 5 shows a dramatic increase in total impact energy at about 350°C.
We are currently conducting tests at low temperatures (from -200°C to
o c).

SUMMARY

For these charging solutions, chloride ions produce substantial pitting
corrosion in of 2090.

- For each orientation, the Charpy impact initiation energy is nearly the
same. But due to the slipping of different layers, the L-S and T-S
orientations have much higher propagation energy than the T-L and L-T
orientations.
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- Because of the pancake-shape grains, the T-S and L-S orientations
showed substantial tearing, with corresponding high propagation energy.
The T-L and L-T orientations will be used for further impact studies.
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I Li Ge Cu Zr Mn Ti V A1

2090

2219

2.40 0.27 1.60 0.13 ...... Bal

.... 6.30 0.18 0.30 0.06 0.i0 Bal

Table 1: Composition of each material.
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Figure 1: Labelling scheme for specimen orientation (8)
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Figure 2: Potentiodynamic curve for a 2090 alloy in a 3.5% NaCl-deionized

water solution: Double Ecorr.
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Figure 3(a): Effect of the orientation of the notch on the initiation energy.
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Figure 4: Schematic representation of failure modes for the charpy impact
specimens.
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